当前位置: 首页 > 文档资料 > 算法珠玑 >

dp/best-time-to-buy-and-sell-stock-iii

优质
小牛编辑
130浏览
2023-12-01

Best Time to Buy and Sell Stock III

描述

Say you have an array for which the i-th element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

分析

设状态f(i),表示区间$$0,i$$的最大利润,状态g(i),表示区间$$i, n-1$$的最大利润,则最终答案为$$\max\left{f(i)+g(i)\right},0 \leq i \leq n-1$$。

允许在一天内买进又卖出,相当于不交易,因为题目的规定是最多两次,而不是一定要两次。

将原数组变成差分数组,本题也可以看做是最大m子段和,m=2,参考代码:https://gist.github.com/soulmachine/5906637

代码

// Best Time to Buy and Sell Stock III
// 时间复杂度O(n),空间复杂度O(n)
public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length < 2) return 0;

        final int n = prices.length;
        int[] f = new int[n];
        int[] g = new int[n];

        for (int i = 1, valley = prices[0]; i < n; ++i) {
            valley = Math.min(valley, prices[i]);
            f[i] = Math.max(f[i - 1], prices[i] - valley);
        }

        for (int i = n - 2, peak = prices[n - 1]; i >= 0; --i) {
            peak = Math.max(peak, prices[i]);
            g[i] = Math.max(g[i], peak - prices[i]);
        }

        int max_profit = 0;
        for (int i = 0; i < n; ++i)
            max_profit = Math.max(max_profit, f[i] + g[i]);

        return max_profit;
    }
}
// Best Time to Buy and Sell Stock III
// 时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() < 2) return 0;

        const int n = prices.size();
        vector<int> f(n, 0);
        vector<int> g(n, 0);

        for (int i = 1, valley = prices[0]; i < n; ++i) {
            valley = min(valley, prices[i]);
            f[i] = max(f[i - 1], prices[i] - valley);
        }

        for (int i = n - 2, peak = prices[n - 1]; i >= 0; --i) {
            peak = max(peak, prices[i]);
            g[i] = max(g[i], peak - prices[i]);
        }

        int max_profit = 0;
        for (int i = 0; i < n; ++i)
            max_profit = max(max_profit, f[i] + g[i]);

        return max_profit;
    }
};

相关题目