当前位置: 首页 > 文档资料 > 算法珠玑 >

linear-list/array/longest-consecutive-sequence

优质
小牛编辑
130浏览
2023-12-01

Longest Consecutive Sequence

描述

Given an unsorted array of integers, find the length of the longest consecutive elements sequence.

For example, Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.

Your algorithm should run in O(n) complexity.

分析

如果允许$$O(n \log n)$$的复杂度,那么可以先排序,可是本题要求O(n)

由于序列里的元素是无序的,又要求O(n),首先要想到用哈希表。

用一个哈希表存储所有出现过的元素,对每个元素,以该元素为中心,往左右扩张,直到不连续为止,记录下最长的长度。

代码

# Longest Consecutive Sequence
# Time Complexity: O(n),Space Complexity: O(n)
class Solution:
    def longestConsecutive(self, nums: List[int]) -> int:
        s = set(nums)
        longest = 0

        for num in s:
            if num-1 not in s:
                current_num = num
                length = 1

                while current_num+1 in s:
                    current_num += 1
                    length +=1

                longest = max(longest, length)

        return longest
// Longest Consecutive Sequence
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
    public int longestConsecutive(int[] nums) {
        Set<Integer> s = new HashSet<Integer>();
        for (int num : nums) {
            s.add(num);
        }

        int longest = 0;

        for (int num : s) {
            if (!s.contains(num-1)) {
                int currentNum = num;
                int length = 1;

                while (s.contains(currentNum+1)) {
                    currentNum += 1;
                    length += 1;
                }

                longest = Math.max(longest, length);
            }
        }

        return longest;
    }
}
// Longest Consecutive Sequence
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
public:
    int longestConsecutive(const vector<int> &nums) {
        unordered_set<int> my_set;
        for (auto i : nums) my_set.insert(i);

        int longest = 0;
        for (auto i : nums) {
            int length = 1;
            for (int j = i - 1; my_set.find(j) != my_set.end(); --j) {
                my_set.erase(j);
                ++length;
            }
            for (int j = i + 1; my_set.find(j) != my_set.end(); ++j) {
                my_set.erase(j);
                ++length;
            }
            longest = max(longest, length);
        }
        return longest;
    }
};