dp/knapsack-problem/last-stone-weight-ii
Last Stone Weight II
描述
We have a collection of rocks, each rock has a positive integer weight.
Each turn, we choose any two rocks and smash them together. Suppose the stones have weights x
and y
with x <= y
. The result of this smash is:
- If
x == y
, both stones are totally destroyed; - If
x != y
, the stone of weightx
is totally destroyed, and the stone of weighty
has new weighty-x
.
At the end, there is at most 1 stone left. Return the smallest possible weight of this stone (the weight is 0 if there are no stones left.)
Example 1:
Input: [2,7,4,1,8,1]
Output: 1
Explanation:
We can combine 2 and 4 to get 2 so the array converts to [2,7,1,8,1] then,
we can combine 7 and 8 to get 1 so the array converts to [2,1,1,1] then,
we can combine 2 and 1 to get 1 so the array converts to [1,1,1] then,
we can combine 1 and 1 to get 0 so the array converts to [1] then that's the optimal value.
Note:
- 1 <= stones.length <= 30
- 1 <= stones[i] <= 100
分析
两块石头粉碎的过程,就是给每个石头赋值正号或者负号的过程,相当于把这些石头分为两组,使得两组的差值尽可能小,所以这是经典的集合划分 NP 完全问题,可以采用动态规划的方法求解。
代码
方法 1
可以转换成 0-1 背包问题,更加简化,只有重量没有价值信息。每个物品 i 的重量为 stones[i]
,价值为 0,背包能容纳的最大重量为sum(stones)/2
。该问题就变成,选择若干物品,能否恰好填满背包?令 f[i][j]
表示前 i 个物品能否填满容量为 j 的背包,则状态转移方程为:
$$f[i][j] = f[i-1][j] \lor f[i-1][j-W[i]]$$
# TODO
// Last Stone Weight II
// 0-1 knapsack problem
// Time Complexity: O(n*W), Space Complexity: O(W)
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for(int i : stones) sum += i;
int[] w = stones; // weight array
int W = sum / 2; // maximum weight capacity of knapsack
boolean[] f = new boolean[W + 1];
f[0] = true; // initialize
for(int i = 0; i < stones.length; i++) {
for(int j = W; j >= w[i]; --j) {
f[j] = f[j] || f[j-w[i]];
}
}
for (int j = W; j >= 0; j--)
if (f[j]) return sum - j*2;
return -1;
}
}
// TODO
方法 2
可以转换成标准的 0-1 背包问题,每个物品 i 的重量为 stones[i]
,价值也为stones[i]
,背包能容纳的最大重量为sum(stones)/2
。
# TODO
// Last Stone Weight II
// 0-1 knapsack problem
// Time Complexity: O(n*W), Space Complexity: O(W)
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for(int i : stones) sum += i;
int[] w = stones; // weight array
int W = sum / 2; // maximum weight capacity of knapsack
int[] f = new int[W + 1];
f[0] = 0; // initialize
for(int i = 0; i < stones.length; i++) {
for(int j = W; j >= w[i]; --j) {
f[j] = Math.max(f[j], f[j-w[i]]+w[i]);
}
}
return sum - f[W]*2;
}
}
// TODO