linear-list/linked-list/lru-cache
优质
小牛编辑
134浏览
2023-12-01
LRU Cache
描述
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
分析
为了使查找、插入和删除都有较高的性能,这题的关键是要使用一个双向链表和一个 HashMap,因为:
- HashMap 保存每个节点的地址,可以基本保证在
O(1)
时间内查找节点 - 双向链表能后在
O(1)
时间内添加和删除节点,单链表则不行
具体实现细节:
- 越靠近链表头部,表示节点上次访问距离现在时间最短,尾部的节点表示最近访问最少
- 访问节点时,如果节点存在,把该节点交换到链表头部,同时更新 hash 表中该节点的地址
- 插入节点时,如果 cache 的 size 达到了上限 capacity,则删除尾部节点,同时要在 hash 表中删除对应的项;新节点插入链表头部
代码
C++的std::list
就是个双向链表,且它有个 splice()
方法,O(1)
时间,非常好用。
Java 中也有双向链表LinkedList
, 但是 LinkedList
封装的太深,没有能在O(1)
时间内删除中间某个元素的 API(C++的list
有个splice()
, O(1), 所以本题 C++可以放心使用splice()
),于是我们只能自己实现一个双向链表。
本题有的人直接用 LinkedHashMap
,代码更短,但这是一种偷懒做法,面试官一定会让你自己重新实现。
// LRU Cache
// HashMap + Doubly Linked List
public class LRUCache {
private int capacity;
private HashMap<Integer, Node> m;
private DList list;
public LRUCache(int capacity) {
this.capacity = capacity;
m = new HashMap<>();
list = new DList();
}
// Time Complexity: O(1)
public int get(int key) {
if (!m.containsKey(key)) return -1;
Node node = m.get(key);
update(node);
return node.value;
}
// Time Complexity: O(1)
public void put(int key, int value) {
if (m.containsKey(key)){
Node node = m.get(key);
node.value = value;
update(node);
} else {
Node node = new Node(key, value);
if (m.size() >= capacity){
Node last = list.peekLast();
m.remove(last.key);
list.remove(last);
}
list.offerFirst(node);
m.put(key, node);
}
}
private void update(Node node) {
list.remove(node);
list.offerFirst(node);
}
// Node of doubly linked list
static class Node {
int key, value;
Node prev, next;
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
// Doubly linked list
static class DList {
Node head, tail;
int size;
DList() {
// head and tail are two dummy nodes
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
}
// Add a new node at head
void offerFirst(Node node) {
head.next.prev = node;
node.next = head.next;
node.prev = head;
head.next = node;
size++;
}
// Remove a node in the middle
void remove(Node node) {
if (node == null) return;
node.prev.next = node.next;
node.next.prev = node.prev;
size--;
}
// Remove the tail node
Node pollLast() {
Node last = tail.prev;
remove(last);
return last;
}
Node peekLast() {
return tail.prev;
}
}
}
// LRU Cache
// 时间复杂度O(logn),空间复杂度O(n)
class LRUCache{
private:
struct CacheNode {
int key;
int value;
CacheNode(int k, int v) :key(k), value(v){}
};
public:
LRUCache(int capacity) {
this->capacity = capacity;
}
int get(int key) {
if (cacheMap.find(key) == cacheMap.end()) return -1;
// 把当前访问的节点移到链表头部,并且更新map中该节点的地址
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
return cacheMap[key]->value;
}
void put(int key, int value) {
if (cacheMap.find(key) == cacheMap.end()) {
if (cacheList.size() == capacity) { //删除链表尾部节点(最少访问的节点)
cacheMap.erase(cacheList.back().key);
cacheList.pop_back();
}
// 插入新节点到链表头部, 并且在map中增加该节点
cacheList.push_front(CacheNode(key, value));
cacheMap[key] = cacheList.begin();
} else {
//更新节点的值,把当前访问的节点移到链表头部,并且更新map中该节点的地址
cacheMap[key]->value = value;
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
}
}
private:
list<CacheNode> cacheList; // doubly linked list
unordered_map<int, list<CacheNode>::iterator> cacheMap;
int capacity;
};