当前位置: 首页 > 文档资料 > 算法珠玑 >

linear-list/linked-list/lru-cache

优质
小牛编辑
134浏览
2023-12-01

LRU Cache

描述

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

分析

为了使查找、插入和删除都有较高的性能,这题的关键是要使用一个双向链表和一个 HashMap,因为:

  • HashMap 保存每个节点的地址,可以基本保证在O(1)时间内查找节点
  • 双向链表能后在O(1)时间内添加和删除节点,单链表则不行

具体实现细节:

  • 越靠近链表头部,表示节点上次访问距离现在时间最短,尾部的节点表示最近访问最少
  • 访问节点时,如果节点存在,把该节点交换到链表头部,同时更新 hash 表中该节点的地址
  • 插入节点时,如果 cache 的 size 达到了上限 capacity,则删除尾部节点,同时要在 hash 表中删除对应的项;新节点插入链表头部

LRU Cche

代码

C++的std::list 就是个双向链表,且它有个 splice()方法,O(1)时间,非常好用。

Java 中也有双向链表LinkedList, 但是 LinkedList 封装的太深,没有能在O(1)时间内删除中间某个元素的 API(C++的list有个splice(), O(1), 所以本题 C++可以放心使用splice()),于是我们只能自己实现一个双向链表。

本题有的人直接用 LinkedHashMap ,代码更短,但这是一种偷懒做法,面试官一定会让你自己重新实现。

// LRU Cache
// HashMap + Doubly Linked List
public class LRUCache {
    private int capacity;
    private HashMap<Integer, Node> m;
    private DList list;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        m = new HashMap<>();
        list = new DList();
    }

    // Time Complexity: O(1)
    public int get(int key) {
        if (!m.containsKey(key)) return -1;
        Node node = m.get(key);
        update(node);
        return node.value;
    }

    // Time Complexity: O(1)
    public void put(int key, int value) {
        if (m.containsKey(key)){
            Node node = m.get(key);
            node.value = value;
            update(node);
        } else {
            Node node = new Node(key, value);
            if (m.size() >= capacity){
                Node last = list.peekLast();
                m.remove(last.key);
                list.remove(last);
            }

            list.offerFirst(node);
            m.put(key, node);
        }
    }

    private void update(Node node) {
        list.remove(node);
        list.offerFirst(node);
    }


    // Node of doubly linked list
    static class Node {
        int key, value;
        Node prev, next;

        Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    // Doubly linked list
    static class DList {
        Node head, tail;
        int size;

        DList() {
            // head and tail are two dummy nodes
            head = new Node(0, 0);
            tail = new Node(0, 0);
            head.next = tail;
            tail.prev = head;
        }

        // Add a new node at head
        void offerFirst(Node node) {
            head.next.prev = node;
            node.next = head.next;
            node.prev = head;
            head.next = node;
            size++;
        }

        // Remove a node in the middle
        void remove(Node node) {
            if (node == null) return;
            node.prev.next = node.next;
            node.next.prev = node.prev;
            size--;
        }

        // Remove the tail node
        Node pollLast() {
            Node last = tail.prev;
            remove(last);
            return last;
        }

        Node peekLast() {
            return tail.prev;
        }
    }
}
// LRU Cache
// 时间复杂度O(logn),空间复杂度O(n)
class LRUCache{
private:
    struct CacheNode {
        int key;
        int value;
        CacheNode(int k, int v) :key(k), value(v){}
    };
public:
    LRUCache(int capacity) {
        this->capacity = capacity;
    }

    int get(int key) {
        if (cacheMap.find(key) == cacheMap.end()) return -1;

        // 把当前访问的节点移到链表头部,并且更新map中该节点的地址
        cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
        cacheMap[key] = cacheList.begin();
        return cacheMap[key]->value;
    }

    void put(int key, int value) {
        if (cacheMap.find(key) == cacheMap.end()) {
            if (cacheList.size() == capacity) { //删除链表尾部节点(最少访问的节点)
                cacheMap.erase(cacheList.back().key);
                cacheList.pop_back();
            }
            // 插入新节点到链表头部, 并且在map中增加该节点
            cacheList.push_front(CacheNode(key, value));
            cacheMap[key] = cacheList.begin();
        } else {
            //更新节点的值,把当前访问的节点移到链表头部,并且更新map中该节点的地址
            cacheMap[key]->value = value;
            cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
            cacheMap[key] = cacheList.begin();
        }
    }
private:
    list<CacheNode> cacheList; // doubly linked list
    unordered_map<int, list<CacheNode>::iterator> cacheMap;
    int capacity;
};

相关题目