brute-force/permutations
优质
小牛编辑
135浏览
2023-12-01
Permutations
描述
Given a collection of numbers, return all possible permutations.
For example, [1,2,3]
have the following permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2]
, and [3,2,1]
.
代码
递归
// Permutations
// Recursive
// Time Complexity: O(n!), Space Complexity: O(n)
public class Solution {
public List<List<Integer>> permute(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> result = new ArrayList<>();
dfs(nums, 0, result);
return result;
}
private static void dfs(int[] nums, int start, List<List<Integer>> result) {
if (start == nums.length) {
result.add(Arrays.stream(nums).boxed().collect(Collectors.toList()));
return;
}
for (int i = start; i < nums.length; i++) {
swap(nums, start, i);
dfs(nums, start + 1, result);
swap(nums, start, i); // restore
}
}
private static void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}
// Permutations
// 深搜,增量构造法
// 时间复杂度O(n!),空间复杂度O(n)
class Solution {
public:
vector<vector<int> > permute(vector<int>& num) {
sort(num.begin(), num.end());
vector<vector<int>> result;
vector<int> path; // 中间结果
dfs(num, path, result);
return result;
}
private:
void dfs(const vector<int>& num, vector<int> &path,
vector<vector<int> > &result) {
if (path.size() == num.size()) { // 收敛条件
result.push_back(path);
return;
}
// 扩展状态
for (auto i : num) {
// 查找 i 是否在path 中出现过
auto pos = find(path.begin(), path.end(), i);
if (pos == path.end()) {
path.push_back(i);
dfs(num, path, result);
path.pop_back();
}
}
}
};
next_permutation()
函数 next_permutation()
的具体实现见这节 Next Permutation。
// Permutations
// 重新实现 next_permutation()
// 时间复杂度O(n!),空间复杂度O(1)
public class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(nums);
do {
ArrayList<Integer> one = new ArrayList<>();
for (int i : nums) {
one.add(i);
}
result.add(one);
// 调用的是 2.1.12 节的 next_permutation()
// 而不是 std::next_permutation()
} while(nextPermutation(nums, 0, nums.length));
return result;
}
// 代码来自 2.1.12 节的 next_permutation()
private static boolean nextPermutation(int[] nums, int begin, int end) {
// From right to left, find the first digit(partitionNumber)
// which violates the increase trend
int p = end - 2;
while (p > -1 && nums[p] >= nums[p + 1]) --p;
// If not found, which means current sequence is already the largest
// permutation, then rearrange to the first permutation and return false
if(p == -1) {
reverse(nums, begin, end);
return false;
}
// From right to left, find the first digit which is greater
// than the partition number, call it changeNumber
int c = end - 1;
while (c > 0 && nums[c] <= nums[p]) --c;
// Swap the partitionNumber and changeNumber
swap(nums, p, c);
// Reverse all the digits on the right of partitionNumber
reverse(nums, p+1, end);
return true;
}
private static void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
private static void reverse(int[] nums, int begin, int end) {
end--;
while (begin < end) {
swap(nums, begin++, end--);
}
}
}
// Permutations
// 重新实现 next_permutation()
// 时间复杂度O(n!),空间复杂度O(1)
class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int> > result;
sort(num.begin(), num.end());
do {
result.push_back(num);
// 调用的是 2.1.12 节的 next_permutation()
// 而不是 std::next_permutation()
} while(next_permutation(num.begin(), num.end()));
return result;
}
private:
// 代码来自 2.1.12 节的 next_permutation()
void nextPermutation(vector<int> &nums) {
next_permutation(nums.begin(), nums.end());
}
template<typename BidiIt>
bool next_permutation(BidiIt first, BidiIt last) {
// Get a reversed range to simplify reversed traversal.
const auto rfirst = reverse_iterator<BidiIt>(last);
const auto rlast = reverse_iterator<BidiIt>(first);
// Begin from the second last element to the first element.
auto pivot = next(rfirst);
// Find `pivot`, which is the first element that is no less than its
// successor. `Prev` is used since `pivort` is a `reversed_iterator`.
while (pivot != rlast && *pivot >= *prev(pivot))
++pivot;
// No such elemenet found, current sequence is already the largest
// permutation, then rearrange to the first permutation and return false.
if (pivot == rlast) {
reverse(rfirst, rlast);
return false;
}
// Scan from right to left, find the first element that is greater than
// `pivot`.
auto change = find_if(rfirst, pivot, bind1st(less<int>(), *pivot));
swap(*change, *pivot);
reverse(rfirst, pivot);
return true;
}
};