当前位置: 首页 > 文档资料 > 算法珠玑 >

binary-tree/segment-tree/range-sum-query-mutable

优质
小牛编辑
127浏览
2023-12-01

Range Sum Query - Mutable

描述

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

Note:

  1. The array is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRange function is distributed evenly.

分析

由于需要求任意段的和,且会随机修改元素,用线段树(Segment Tree)再合适不过了。

另外一个数据结构,树状数组(Binary Indexed Tree),也适合解这道题。

解法 1 线段树

// Range Sum Query - Mutable
// Segment Tree
public class NumArray {
    private SegmentTreeNode root;

    // Time Complexity: O(n)
    public NumArray(int[] nums) {
        this.root = buildTree(nums, 0, nums.length);
    }

    // Time Complexity: O(log n)
    void update(int i, int val) {
        updateHelper(this.root, i, val);
    }

    // Time Complexity: O(log n)
    public int sumRange(int i, int j) {
        return sumRangeHelper(this.root, i, j+1);
    }

    private static SegmentTreeNode buildTree(int[] nums, int begin, int end) {
        if (nums == null || nums.length == 0 || begin >= end)
            return null;
        if (begin == end - 1) // one element
            return new SegmentTreeNode(begin, end, nums[begin]);

        final SegmentTreeNode root = new SegmentTreeNode(begin, end);
        final int middle = begin + (end - begin) / 2;
        root.left = buildTree(nums, begin, middle);
        root.right = buildTree(nums, middle, end);
        root.sum = root.left.sum + root.right.sum;

        return root;
    }

    private static void updateHelper(SegmentTreeNode root, int i, int val) {
        if (root.begin == root.end - 1 && root.begin == i) {
            root.sum = val;
            return;
        }

        final int middle = root.begin + (root.end - root.begin) / 2;
        if (i < middle) {
            updateHelper(root.left, i, val);
        } else {
            updateHelper(root.right, i, val);
        }

        root.sum = root.left.sum + root.right.sum;
    }
    private static int sumRangeHelper(SegmentTreeNode root, int begin, int end) {
        if (root == null || begin >=root.end || end <= root.begin)
            return 0;
        if (begin <= root.begin && end >= root.end)
            return root.sum;

        final int middle = root.begin + (root.end - root.begin) / 2;
        return sumRangeHelper(root.left, begin, Math.min(end, middle)) +
                sumRangeHelper(root.right, Math.max(middle, begin), end);
    }

    static class SegmentTreeNode {
        private int begin;
        private int end;
        private int sum;
        private SegmentTreeNode left;
        private SegmentTreeNode right;

        public SegmentTreeNode(int begin, int end, int sum) {
            this.begin = begin;
            this.end = end;
            this.sum = sum;
        }
        public SegmentTreeNode(int begin, int end) {
            this(begin, end, 0);
        }
    }
}

解法 2 树状数组

// Range Sum Query - Mutable
// Binary Indexed Tree
public class NumArray {
    private int[] nums;
    private int[] bit;

    // Time Complexity: O(n)
    public NumArray(int[] nums) {
        // index 0 is unused
        this.nums = new int[nums.length + 1];
        this.bit = new int[nums.length + 1];

        for (int i = 0; i < nums.length; ++i) {
            update(i, nums[i]);
        }
    }

    // Time Complexity: O(log n)
    public void update(int index, int val) {
        final int diff = val - nums[index + 1];
        for (int i = index + 1; i < nums.length; i += lowbit(i)) {
            bit[i] += diff;
        }
        nums[index + 1] = val;
    }

    // Time Complexity: O(log n)
    public int sumRange(int i, int j) {
        return read(j + 1) - read(i);
    }

    private int read(int index) {
        int result = 0;
        for (int i = index; i > 0; i -= lowbit(i)) {
            result += bit[i];
        }
        return result;
    }

    private static int lowbit(int x) {
        return x & (-x);  // must use parentheses
    }
}

相关题目