dfs/android-unlock-patterns
Android Unlock Patterns
描述
Android devices have a special lock screen with a 3 x 3
grid of dots. Users can set an "unlock pattern" by connecting the dots in a specific sequence, forming a series of joined line segments where each segment's endpoints are two consecutive dots in the sequence. A sequence of k
dots is a valid unlock pattern if both of the following are true:
- All the dots in the sequence are distinct.
- If the line segment connecting two consecutive dots in the sequence passes through any other dot, the other dot must have previously appeared in the sequence. No jumps through non-selected dots are allowed.
Here are some example valid and invalid unlock patterns:
- The 1st pattern
[4,1,3,6]
is invalid because the line connecting dots 1 and 3 pass through dot 2, but dot 2 did not previously appear in the sequence. - The 2nd pattern
[4,1,9,2]
is invalid because the line connecting dots 1 and 9 pass through dot 5, but dot 5 did not previously appear in the sequence. - The 3rd pattern
[2,4,1,3,6]
is valid because it follows the conditions. The line connecting dots 1 and 3 meets the condition because dot 2 previously appeared in the sequence. - The 4th pattern
[6,5,4,1,9,2]
is valid because it follows the conditions. The line connecting dots 1 and 9 meets the condition because dot 5 previously appeared in the sequence.
Given two integers m
and n
, return the number of unique and valid unlock patterns of the Android grid lock screen that consist of at least m
keys and at most n
keys.
Two unlock patterns are considered unique if there is a dot in one sequence that is not in the other, or the order of the dots is different.
Example 1:
Input: m = 1, n = 1
Output: 9
Example 2:
Input: m = 1, n = 2
Output: 65
Constraints:
1 <= m, n <= 9
分析
深搜,配合大量剪枝。
剪枝通常需要深入理解题意,掌握领域知识(domain knowledge)。本题有个比较重要的特性是,1,3,5,7 这 4 个点是互相对称的,即以 1 作为起点,得到的有效模式的个数,与以 3 作为起点,得到的有效模式的个数,是相等的,5, 7 也是类似。同理,2,4,6,8 这 4 个点也是对称的。
换句话说,令 f[i]
表示以i
为起点的有效模式的个数,总数就是 f[1]*4+f[2]*4+f[5]
。
代码
// Android Unlock Patterns
// Time Complexity O(n!), Space Complexity: O(n)
public class Solution {
public int numberOfPatterns(int m, int n) {
int[][] jumps = build_jump_table();
boolean[] visited = new boolean[10];
int count = 0;
for(int i = m; i <= n; ++i) {
count += dfs(visited, jumps, 1, i - 1) * 4; // 1, 3, 7, 9 are symmetric
count += dfs(visited, jumps, 2, i - 1) * 4; // 2, 4, 6, 8 are symmetric
count += dfs(visited, jumps, 5, i - 1); // 5
}
return count;
}
private static int dfs(boolean visited[], int[][] jumps, int num, int remain) {
if(remain == 0) return 1;
int count = 0;
visited[num] = true;
for(int i = 1; i <= 9; ++i) {
int mid = jumps[num][i]; // Edge num->i jumps over mid
if(!visited[i] && (mid == 0 || (visited[mid]))) {
count += dfs(visited, jumps, i, remain - 1);
}
}
visited[num] = false;
return count;
}
private int[][] build_jump_table() {
int[][] jumps = new int[10][10]; // jump table, 0 means adjacent
jumps[1][3] = jumps[3][1] = 2; // The edge 1->3 jumps over 2
jumps[1][7] = jumps[7][1] = 4;
jumps[3][9] = jumps[9][3] = 6;
jumps[7][9] = jumps[9][7] = 8;
jumps[2][8] = jumps[8][2] = jumps[4][6] = jumps[6][4] = 5;
jumps[1][9] = jumps[9][1] = jumps[3][7] = jumps[7][3] = 5;
return jumps;
}
}
// TODO