dp/maximal-rectangle
优质
小牛编辑
126浏览
2023-12-01
Maximal Rectangle
描述
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
分析
无
代码
// Maximal Rectangle
// 时间复杂度O(n^2),空间复杂度O(n)
public class Solution {
public int maximalRectangle(char[][] matrix) {
if (matrix.length == 0) return 0;
final int m = matrix.length;
final int n = matrix[0].length;
int[] H = new int[n];
int[] L = new int[n];
int[] R = new int[n];
Arrays.fill(R, n);
int ret = 0;
for (int i = 0; i < m; ++i) {
int left = 0, right = n;
// calculate L(i, j) from left to right
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
++H[j];
L[j] = Math.max(L[j], left);
} else {
left = j+1;
H[j] = 0; L[j] = 0; R[j] = n;
}
}
// calculate R(i, j) from right to left
for (int j = n-1; j >= 0; --j) {
if (matrix[i][j] == '1') {
R[j] = Math.min(R[j], right);
ret = Math.max(ret, H[j]*(R[j]-L[j]));
} else {
right = j;
}
}
}
return ret;
}
}
// Maximal Rectangle
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
int maximalRectangle(vector<vector<char> > &matrix) {
if (matrix.empty()) return 0;
const int m = matrix.size();
const int n = matrix[0].size();
vector<int> H(n, 0);
vector<int> L(n, 0);
vector<int> R(n, n);
int ret = 0;
for (int i = 0; i < m; ++i) {
int left = 0, right = n;
// calculate L(i, j) from left to right
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
++H[j];
L[j] = max(L[j], left);
} else {
left = j+1;
H[j] = 0; L[j] = 0; R[j] = n;
}
}
// calculate R(i, j) from right to left
for (int j = n-1; j >= 0; --j) {
if (matrix[i][j] == '1') {
R[j] = min(R[j], right);
ret = max(ret, H[j]*(R[j]-L[j]));
} else {
right = j;
}
}
}
return ret;
}
};