当前位置: 首页 > 文档资料 > 算法珠玑 >

dp/maximal-rectangle

优质
小牛编辑
132浏览
2023-12-01

Maximal Rectangle

描述

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

分析

代码

// Maximal Rectangle
// 时间复杂度O(n^2),空间复杂度O(n)
public class Solution {
    public int maximalRectangle(char[][] matrix) {
        if (matrix.length == 0)  return 0;

        final int m = matrix.length;
        final int n = matrix[0].length;
        int[] H = new int[n];
        int[] L = new int[n];
        int[] R = new int[n];
        Arrays.fill(R, n);

        int ret = 0;
        for (int i = 0; i < m; ++i) {
            int left = 0, right = n;
            // calculate L(i, j) from left to right
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    ++H[j];
                    L[j] = Math.max(L[j], left);
                } else {
                    left = j+1;
                    H[j] = 0; L[j] = 0; R[j] = n;
                }
            }
            // calculate R(i, j) from right to left
            for (int j = n-1; j >= 0; --j) {
                if (matrix[i][j] == '1') {
                    R[j] = Math.min(R[j], right);
                    ret = Math.max(ret, H[j]*(R[j]-L[j]));
                } else {
                    right = j;
                }
            }
        }
        return ret;
    }
}
// Maximal Rectangle
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
    int maximalRectangle(vector<vector<char> > &matrix) {
        if (matrix.empty())  return 0;

        const int m = matrix.size();
        const int n = matrix[0].size();
        vector<int> H(n, 0);
        vector<int> L(n, 0);
        vector<int> R(n, n);

        int ret = 0;
        for (int i = 0; i < m; ++i) {
            int left = 0, right = n;
            // calculate L(i, j) from left to right
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    ++H[j];
                    L[j] = max(L[j], left);
                } else {
                    left = j+1;
                    H[j] = 0; L[j] = 0; R[j] = n;
                }
            }
            // calculate R(i, j) from right to left
            for (int j = n-1; j >= 0; --j) {
                if (matrix[i][j] == '1') {
                    R[j] = min(R[j], right);
                    ret = max(ret, H[j]*(R[j]-L[j]));
                } else {
                    right = j;
                }
            }
        }
        return ret;
    }
};