linear-list/array/2sum
优质
小牛编辑
127浏览
2023-12-01
2Sum
描述
Given an array of integers, find two numbers such that they add up to a specific target number.
The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
- 2 <= nums.length <= $10^5$
- $-10^9$ <= nums[i] <= $10^9$
- $-10^9$ <= target <= $10^9$
- Only one valid answer exists.
分析
方法 1:暴力,复杂度$$O(n^2)$$,会超时
方法 2:hash。用一个哈希表,存储每个数对应的下标,复杂度O(n)
.
方法 3:先排序,然后左右夹逼,排序$$O(n\log n)$$,左右夹逼O(n)
,最终$$O(n\log n)$$。但是注意,这题需要返回的是下标,而不是数字本身,因此这个方法行不通。
代码
HashMap + 两次遍历
# Two Sum
# 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
# Time Complexity: O(n),Space Complexity: O(n)
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
m = {num: i for i, num in enumerate(nums)}
for i, num in enumerate(nums):
complement = m.get(target - num)
if complement is not None and complement > i:
return [i, complement]
return None
// Two Sum
// 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
public class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> m = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
m.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
final Integer complement = m.get(target-nums[i]);
if (complement != null && complement > i) {
return new int[]{i, complement};
}
}
return null;
}
};
// Two Sum
// 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> m;
for (int i = 0; i < nums.size(); i++) {
m[nums[i]] = i;
}
for (int i = 0; i < nums.size(); i++) {
auto complement = m.find(target - nums[i]);
if (complement != m.end() && complement->second > i) {
return {i, complement->second};
}
}
return {-1, -1};
}
};
HashMap + 单次遍历
上面的方法可以优化一下,只需要一次遍历。
# Two Sum
# 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
# Time Complexity: O(n),Space Complexity: O(n)
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
m = {}
for i, num in enumerate(nums):
complement = m.get(target - num)
if complement is not None:
return [i, complement]
m[num] = i
return None
// Two Sum
// 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
public class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> m = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
final Integer complement = m.get(target-nums[i]);
if (complement != null) {
return new int[]{i, complement};
}
m.put(nums[i], i);
}
return new int[]{-1, -1};
}
};
// Two Sum
// 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> m;
for (int i = 0; i < nums.size(); i++) {
auto complement = m.find(target - nums[i]);
if (complement != m.end()) {
return {i, complement->second};
}
m[nums[i]] = i;
}
return {-1, -1};
}
};