当前位置: 首页 > 文档资料 > 算法珠玑 >

linear-list/array/2sum

优质
小牛编辑
127浏览
2023-12-01

2Sum

描述

Given an array of integers, find two numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2.

Example 1:

Input: nums = [2,7,11,15], target = 9

Output: [0,1]

Example 2:

Input: nums = [3,2,4], target = 6

Output: [1,2]

Example 3:

Input: nums = [3,3], target = 6

Output: [0,1]

Constraints:

  • 2 <= nums.length <= $10^5$
  • $-10^9$ <= nums[i] <= $10^9$
  • $-10^9$ <= target <= $10^9$
  • Only one valid answer exists.

分析

方法 1:暴力,复杂度$$O(n^2)$$,会超时

方法 2:hash。用一个哈希表,存储每个数对应的下标,复杂度O(n).

方法 3:先排序,然后左右夹逼,排序$$O(n\log n)$$,左右夹逼O(n),最终$$O(n\log n)$$。但是注意,这题需要返回的是下标,而不是数字本身,因此这个方法行不通。

代码

HashMap + 两次遍历

# Two Sum
# 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
# Time Complexity: O(n),Space Complexity: O(n)
class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        m = {num: i for i, num in enumerate(nums)}

        for i, num in enumerate(nums):
            complement = m.get(target - num)
            if complement is not None and complement > i:
                return [i, complement]

        return None
// Two Sum
// 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
public class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> m = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            m.put(nums[i], i);
        }
        for (int i = 0; i < nums.length; i++) {
            final Integer complement = m.get(target-nums[i]);
            if (complement != null && complement > i) {
                return new int[]{i, complement};
            }
        }
        return null;
    }
};
// Two Sum
// 方法2:HashMap + 两次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> m;
        for (int i = 0; i < nums.size(); i++) {
            m[nums[i]] = i;
        }
        for (int i = 0; i < nums.size(); i++) {
            auto complement = m.find(target - nums[i]);
            if (complement != m.end() && complement->second > i) {
                return {i, complement->second};
            }
        }
        return {-1, -1};
    }
};

HashMap + 单次遍历

上面的方法可以优化一下,只需要一次遍历。

# Two Sum
# 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
# Time Complexity: O(n),Space Complexity: O(n)
class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        m = {}
        for i, num in enumerate(nums):
            complement = m.get(target - num)
            if complement is not None:
                return [i, complement]
            m[num] = i
        return None
// Two Sum
// 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
public class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> m = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            final Integer complement = m.get(target-nums[i]);
            if (complement != null) {
                return new int[]{i, complement};
            }
            m.put(nums[i], i);
        }
        return new int[]{-1, -1};
    }
};
// Two Sum
// 方法2:HashMap + 单次遍历。用一个哈希表,存储每个数对应的下标
// Time Complexity: O(n),Space Complexity: O(n)
class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> m;
        for (int i = 0; i < nums.size(); i++) {
            auto complement = m.find(target - nums[i]);
            if (complement != m.end()) {
                return {i, complement->second};
            }
            m[nums[i]] = i;
        }
        return {-1, -1};
    }
};

相关题目