linear-list/array/3sum-closest
优质
小牛编辑
132浏览
2023-12-01
3Sum Closest
描述
Given an array S
of n
integers, find three integers in S
such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}
, and target = 1
.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2
).
分析
先排序,然后双指针左右夹逼,复杂度 $$O(n^2)$$。
代码
# 3Sum Closest
# 先排序,然后双指针左右夹逼
# Time Complexity: O(n^2)
# Space Complexity: from O(logn) to O(n), depending on the
# implementation of the sorting algorithm
class Solution:
def threeSumClosest(self, nums: List[int], target: int) -> int:
diff = float('inf')
nums.sort()
for i in range(len(nums)):
low, high = i + 1, len(nums) - 1
while low < high:
sum = nums[i] + nums[low] + nums[high]
if abs(target - sum) < abs(diff):
diff = target - sum
if sum < target:
low += 1
else:
high -= 1
return target - diff
// 3Sum Closest
// 先排序,然后双指针左右夹逼
// Time Complexity: O(n^2)
// Space Complexity: from O(logn) to O(n), depending on the
// implementation of the sorting algorithm
public class Solution {
public int threeSumClosest(int[] nums, int target) {
int diff = Integer.MAX_VALUE;
Arrays.sort(nums);
for (int i = 0; i < nums.length; ++i) {
int low = i + 1, high = nums.length - 1; // two pointers
while(low < high) {
int sum = nums[i] + nums[low] + nums[high];
if (Math.abs(sum - target) < Math.abs(diff))
diff = target - sum;
if (sum < target) ++low;
else --high;
}
}
return target - diff;
}
}
// 3Sum Closest
// 先排序,然后双指针左右夹逼
// Time Complexity: O(n^2)
// Space Complexity: from O(logn) to O(n), depending on the
// implementation of the sorting algorithm
class Solution {
public:
int threeSumClosest(vector<int>& nums, int target) {
int diff = INT_MAX;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); ++i) {
int low = i + 1, high = nums.size() - 1; // two pointers
while(low < high) {
int sum = nums[i] + nums[low] + nums[high];
if (abs(sum - target) < abs(diff))
diff = target - sum;
if (sum < target) ++low;
else --high;
}
}
return target - diff;
}
};