dp/distinct-subsequences
优质
小牛编辑
133浏览
2023-12-01
Distinct Subsequences
描述
Given a string S
and a string T
, count the number of distinct subsequences of T
in S
.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example: S
= "rabbbit"
, T
= "rabbit"
Return 3.
分析
设状态为f(i,j)
,表示T[0,j]
在S[0,i]
里出现的次数。首先,无论S[i]
和T[j]
是否相等,若不使用S[i]
,则f(i,j)=f(i-1,j)
;若S[i]==T[j]
,则可以使用S[i]
,此时f(i,j)=f(i-1,j)+f(i-1, j-1)
。
代码
// Distinct Subsequences
// 二维动规+滚动数组
// 时间复杂度O(m*n),空间复杂度O(n)
public class Solution {
public int numDistinct(String s, String t) {
int[] f = new int[t.length() + 1];
f[0] = 1;
for (int i = 0; i < s.length(); ++i) {
for (int j = t.length() - 1; j >= 0; --j) {
f[j + 1] += s.charAt(i) == t.charAt(j) ? f[j] : 0;
}
}
return f[t.length()];
}
}
// Distinct Subsequences
// 二维动规+滚动数组
// 时间复杂度O(m*n),空间复杂度O(n)
class Solution {
public:
int numDistinct(const string &S, const string &T) {
vector<int> f(T.size() + 1);
f[0] = 1;
for (int i = 0; i < S.size(); ++i) {
for (int j = T.size() - 1; j >= 0; --j) {
f[j + 1] += S[i] == T[j] ? f[j] : 0;
}
}
return f[T.size()];
}
};