linear-list/array/4sum
优质
小牛编辑
127浏览
2023-12-01
4Sum
描述
Given an array S
of n
integers, are there elements a, b, c
, and d
in S
such that a + b + c + d = target
? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet
(a,b,c,d)
must be in non-descending order. (ie, $$a \leq b \leq c \leq d$$) - The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}
, and target = 0
.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
分析
先排序,然后双指针左右夹逼,复杂度 $$O(n^3)$$,会超时。
可以用一个 hashmap 先缓存两个数的和,最终复杂度$$O(n^3)$$。这个策略也适用于 3Sum 。
代码
双指针
# 4Sum
# 双指针
# Time Complexity: O(n^3),Space Complexity: O(n)
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
nums.sort()
return self.kSum(nums, 0, target, 4)
def twoSumII(self, nums: List[int], start: int, target:int)->List[List[int]]:
result = []
low, high = start, len(nums)-1
while low < high:
sum = nums[low] + nums[high]
if sum < target:
low += 1
elif sum > target:
high -= 1
else:
result.append([nums[low], nums[high]])
low += 1
high -= 1
while low < high and nums[low] == nums[low-1]:
low += 1
while low < high and nums[high] == nums[high+1]:
high -= 1
return result
def kSum(self, nums: List[int], start: int, target: int, k: int) -> List[List[int]]:
result = []
if k == 2:
return self.twoSumII(nums, start, target)
if start + k > len(nums) or nums[start] * k > target or nums[-1] * k < target:
return result
for i in range(start, len(nums)):
if i == start or nums[i] != nums[i-1]:
for lst in self.kSum(nums, i+1, target-nums[i], k-1):
result.append([nums[i]] + lst)
return result
// 4Sum
// 先排序,然后双指针左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
public class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
return kSum(nums, 0, target, 4);
}
public List<List<Integer>> kSum(int[] nums, int start, int target, int k) {
List<List<Integer>> result = new ArrayList<>();
if (k == 2) {
return twoSumII(nums, start, target);
}
if (start+k > nums.length || nums[start] * k > target || target > nums[nums.length - 1] * k) {
return result;
}
for (int i = start; i < nums.length; ++i) {
if (i == start || nums[i - 1] != nums[i]) {
for (var list : kSum(nums, i + 1, target - nums[i], k - 1)) {
list.add(nums[i]);
result.add(list);
}
}
}
return result;
}
public List<List<Integer>> twoSumII(int[] nums, int start, int target) {
List<List<Integer>> result = new ArrayList<>();
int low = start, high = nums.length - 1;
while (low < high) {
int sum = nums[low] + nums[high];
if (sum < target) {
++low;
} else if(sum > target) {
--high;
} else {
result.add(new ArrayList<>(Arrays.asList(nums[low++], nums[high--])));
while(low < high && nums[low] == nums[low-1]) ++low;
while(low < high && nums[high] == nums[high+1]) --high;
}
}
return result;
}
}
// 4Sum
// 先排序,然后左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(begin(nums), end(nums));
return kSum(nums, 0, target, 4);
}
vector<vector<int>> kSum(vector<int>& nums, int start, int target, int k) {
vector<vector<int>> result;
if (k == 2) {
return twoSumII(nums, start, target);
}
if (start+k > nums.size() || nums[start] * k > target || target > nums.back() * k) {
return result;
}
for (int i = start; i < nums.size(); ++i) {
if (i == start || nums[i - 1] != nums[i]) {
for (auto &list : kSum(nums, i + 1, target - nums[i], k - 1)) {
list.push_back(nums[i]);
result.push_back(list);
}
}
}
return result;
}
vector<vector<int>> twoSumII(const vector<int>& nums, int start, int target) {
vector<vector<int>> result;
int low = start, high = nums.size() - 1;
while (low < high) {
int sum = nums[low] + nums[high];
if (sum < target) {
++low;
} else if (sum > target) {
--high;
} else {
result.push_back({ nums[low++], nums[high--] });
while(low < high && nums[low] == nums[low-1]) ++low;
while(low < high && nums[high] == nums[high+1]) --high;
}
}
return result;
}
};
HashSet
其他代码完全一样,仅仅是twoSumII()
不一样。
# 4Sum
# 先排序,然后twoSumII()用HashSet实现
# Time Complexity: O(n^3),Space Complexity: O(n)
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
nums.sort()
return self.kSum(nums, 0, target, 4)
def twoSumII(self, nums: List[int], start: int, target:int)->List[List[int]]:
result = []
s = set()
for i in range(start, len(nums)):
if len(result) == 0 or result[-1][1] != nums[i]:
complement = target - nums[i]
if complement in s:
result.append([complement, nums[i]])
s.add(nums[i])
return result
def kSum(self, nums: List[int], start: int, target: int, k: int) -> List[List[int]]:
result = []
if k == 2:
return self.twoSumII(nums, start, target)
if start + k > len(nums) or nums[start] * k > target or nums[-1] * k < target:
return result
for i in range(start, len(nums)-k+1):
if i == start or nums[i] != nums[i-1]:
for lst in self.kSum(nums, i+1, target-nums[i], k-1):
result.append([nums[i]] + lst)
return result
// 4Sum
// 先排序,然后twoSumII()用HashSet实现
// Time Complexity: O(n^3),Space Complexity: O(k)
public class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
return kSum(nums, 0, target, 4);
}
public List<List<Integer>> kSum(int[] nums, int start, int target, int k) {
List<List<Integer>> result = new ArrayList<>();
if (k == 2) {
return twoSumII(nums, start, target);
}
if (start+k > nums.length || nums[start] * k > target || target > nums[nums.length - 1] * k) {
return result;
}
for (int i = start; i < nums.length; ++i) {
if (i == start || nums[i - 1] != nums[i]) {
for (var list : kSum(nums, i + 1, target - nums[i], k - 1)) {
list.add(nums[i]);
result.add(list);
}
}
}
return result;
}
public List<List<Integer>> twoSumII(int[] nums, int start, int target) {
List<List<Integer>> result = new ArrayList<>();
Set<Integer> s = new HashSet<>();
for (int i = start; i < nums.length; ++i) {
if (result.isEmpty() || result.get(result.size() - 1).get(1) != nums[i]) {
int complement = target - nums[i];
if (s.contains(complement)) {
result.add(new ArrayList<>(Arrays.asList(complement, nums[i])));
}
}
s.add(nums[i]);
}
return result;
}
}
// 4Sum
// 先排序,然后左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(begin(nums), end(nums));
return kSum(nums, 0, target, 4);
}
vector<vector<int>> kSum(vector<int>& nums, int start, int target, int k) {
vector<vector<int>> result;
if (k == 2) {
return twoSumII(nums, start, target);
}
if (start+k > nums.size() || nums[start] * k > target || target > nums.back() * k) {
return result;
}
for (int i = start; i < nums.size(); ++i) {
if (i == start || nums[i - 1] != nums[i]) {
for (auto &list : kSum(nums, i + 1, target - nums[i], k - 1)) {
list.push_back(nums[i]);
result.push_back(list);
}
}
}
return result;
}
vector<vector<int>> twoSumII(vector<int>& nums, int start, int target) {
vector<vector<int>> result;
unordered_set<int> s;
for (auto i = start; i < nums.size(); ++i) {
if (result.empty() || result.back()[1] != nums[i]) {
int complement = target - nums[i];
if (s.count(complement)) {
result.push_back({ complement, nums[i]});
}
}
s.insert(nums[i]);
}
return result;
}
};
kSum 问题总结
对于 kSum 这类问题,
- 如果求的是具体的位置,就不能 sort,因为排序后位置信息就丢失了
- 如果求位置,用 HashMap, 求组合本身,用 HashSet 就足够了
- 如果求的是组合本身且 k>2, 无论如何,先排序,然后再考虑用双指针或者 HashSet
twoSumII()
可以作为一个通用的底层函数,它往往有两种实现,双指针或者 HashSet(HashMap)twoSumII()
的 HashSet 实现,比较直观的是两次遍历,可以优化成单次遍历。
2Sum求的是位置,因此不能 sort。用两轮循环暴力搜索,时间复杂度$O(n^2)$, 空间复杂度 O(1);如果用一个 HashMap 来缓存位置,时间复杂度可以降低到 O(n),代价是空间复杂度变为 O(n)。
2Sum II求的是组合本身,nums
数组已排好序,因此就不必再排序了,直接用双指针左右夹逼,时间复杂度 O(n),空间复杂度 O(1);也可以用 HashSet,时间复杂度 O(n),空间复杂度 O(n),并没有比双指针快,却更占内存。因此这题最佳方法是双指针。
3Sum求的是组合本身且 k>2, 先排序,然后用双指针或者 HashSet 两种方法都可以。
4Sum求的是组合本身且 k>2, 先排序,然后用双指针或者 HashSet 两种方法都可以。