当前位置: 首页 > 文档资料 > 算法珠玑 >

linear-list/array/4sum

优质
小牛编辑
127浏览
2023-12-01

4Sum

描述

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

  • Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, $$a \leq b \leq c \leq d$$)
  • The solution set must not contain duplicate quadruplets.

For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

A solution set is:

(-1,  0, 0, 1)
(-2, -1, 1, 2)
(-2,  0, 0, 2)

分析

先排序,然后双指针左右夹逼,复杂度 $$O(n^3)$$,会超时。

可以用一个 hashmap 先缓存两个数的和,最终复杂度$$O(n^3)$$。这个策略也适用于 3Sum 。

代码

双指针

# 4Sum
# 双指针
# Time Complexity: O(n^3),Space Complexity: O(n)
class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        nums.sort()
        return self.kSum(nums, 0, target, 4)

    def twoSumII(self, nums: List[int], start: int, target:int)->List[List[int]]:
        result = []
        low, high = start, len(nums)-1
        while low < high:
            sum = nums[low] + nums[high]
            if sum < target:
                low += 1
            elif sum > target:
                high -= 1
            else:
                result.append([nums[low], nums[high]])
                low += 1
                high -= 1
                while low < high and nums[low] == nums[low-1]:
                    low += 1
                while low < high and nums[high] == nums[high+1]:
                    high -= 1
        return result

    def kSum(self, nums: List[int], start: int, target: int, k: int) -> List[List[int]]:
        result = []
        if k == 2:
            return self.twoSumII(nums, start, target)
        if start + k > len(nums) or nums[start] * k > target or nums[-1] * k < target:
            return result
        for i in range(start, len(nums)):
            if i == start or nums[i] != nums[i-1]:
                for lst in self.kSum(nums, i+1, target-nums[i], k-1):
                    result.append([nums[i]] + lst)
        return result
// 4Sum
// 先排序,然后双指针左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
public class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        Arrays.sort(nums);
        return kSum(nums, 0, target, 4);
    }
    public List<List<Integer>> kSum(int[] nums, int start, int target, int k) {
        List<List<Integer>> result = new ArrayList<>();
        if (k == 2) {
            return twoSumII(nums, start, target);
        }
        if (start+k > nums.length || nums[start] * k > target || target > nums[nums.length - 1] * k) {
            return result;
        }
        for (int i = start; i < nums.length; ++i) {
            if (i == start || nums[i - 1] != nums[i]) {
                for (var list : kSum(nums, i + 1, target - nums[i], k - 1)) {
                    list.add(nums[i]);
                    result.add(list);
                }
            }
        }
        return result;
    }
    public List<List<Integer>> twoSumII(int[] nums, int start, int target) {
        List<List<Integer>> result = new ArrayList<>();
        int low = start, high = nums.length - 1;
        while (low < high) {
            int sum = nums[low] + nums[high];
            if (sum < target) {
                ++low;
            } else if(sum > target) {
                --high;
            } else {
                result.add(new ArrayList<>(Arrays.asList(nums[low++], nums[high--])));
                while(low < high && nums[low] == nums[low-1]) ++low;
                while(low < high && nums[high] == nums[high+1]) --high;
            }
        }
        return result;
    }
}
// 4Sum
// 先排序,然后左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        return kSum(nums, 0, target, 4);
    }
    vector<vector<int>> kSum(vector<int>& nums, int start, int target, int k) {
        vector<vector<int>> result;
        if (k == 2) {
            return twoSumII(nums, start, target);
        }
        if (start+k > nums.size() || nums[start] * k > target || target > nums.back() * k) {
            return result;
        }

        for (int i = start; i < nums.size(); ++i) {
            if (i == start || nums[i - 1] != nums[i]) {
                for (auto &list : kSum(nums, i + 1, target - nums[i], k - 1)) {
                    list.push_back(nums[i]);
                    result.push_back(list);
                }
            }
        }
        return result;
    }
    vector<vector<int>> twoSumII(const vector<int>& nums, int start, int target) {
        vector<vector<int>> result;
        int low = start, high = nums.size() - 1;
        while (low < high) {
            int sum = nums[low] + nums[high];
            if (sum < target) {
                ++low;
            } else if (sum > target) {
                --high;
            } else {
                result.push_back({ nums[low++], nums[high--] });
                while(low < high && nums[low] == nums[low-1]) ++low;
                while(low < high && nums[high] == nums[high+1]) --high;
            }
        }
        return result;
    }
};

HashSet

其他代码完全一样,仅仅是twoSumII()不一样。

# 4Sum
# 先排序,然后twoSumII()用HashSet实现
# Time Complexity: O(n^3),Space Complexity: O(n)
class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        nums.sort()
        return self.kSum(nums, 0, target, 4)

    def twoSumII(self, nums: List[int], start: int, target:int)->List[List[int]]:
        result = []
        s = set()
        for i in range(start, len(nums)):
            if len(result) == 0 or result[-1][1] != nums[i]:
                complement = target - nums[i]
                if complement in s:
                    result.append([complement, nums[i]])
            s.add(nums[i])
        return result

    def kSum(self, nums: List[int], start: int, target: int, k: int) -> List[List[int]]:
        result = []
        if k == 2:
            return self.twoSumII(nums, start, target)
        if start + k > len(nums) or nums[start] * k > target or nums[-1] * k < target:
            return result
        for i in range(start, len(nums)-k+1):
            if i == start or nums[i] != nums[i-1]:
                for lst in self.kSum(nums, i+1, target-nums[i], k-1):
                    result.append([nums[i]] + lst)
        return result
// 4Sum
// 先排序,然后twoSumII()用HashSet实现
// Time Complexity: O(n^3),Space Complexity: O(k)
public class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        Arrays.sort(nums);
        return kSum(nums, 0, target, 4);
    }
    public List<List<Integer>> kSum(int[] nums, int start, int target, int k) {
        List<List<Integer>> result = new ArrayList<>();
        if (k == 2) {
            return twoSumII(nums, start, target);
        }
        if (start+k > nums.length || nums[start] * k > target || target > nums[nums.length - 1] * k) {
            return result;
        }
        for (int i = start; i < nums.length; ++i) {
            if (i == start || nums[i - 1] != nums[i]) {
                for (var list : kSum(nums, i + 1, target - nums[i], k - 1)) {
                    list.add(nums[i]);
                    result.add(list);
                }
            }
        }
        return result;
    }
    public List<List<Integer>> twoSumII(int[] nums, int start, int target) {
        List<List<Integer>> result = new ArrayList<>();
        Set<Integer> s = new HashSet<>();
        for (int i = start; i < nums.length; ++i) {
            if (result.isEmpty() || result.get(result.size() - 1).get(1) != nums[i]) {
                int complement = target - nums[i];
                if (s.contains(complement)) {
                    result.add(new ArrayList<>(Arrays.asList(complement, nums[i])));
                }
            }
            s.add(nums[i]);
        }
        return result;
    }
}
// 4Sum
// 先排序,然后左右夹逼
// Time Complexity: O(n^3),Space Complexity: O(k)
class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        sort(begin(nums), end(nums));
        return kSum(nums, 0, target, 4);
    }
    vector<vector<int>> kSum(vector<int>& nums, int start, int target, int k) {
        vector<vector<int>> result;
        if (k == 2) {
            return twoSumII(nums, start, target);
        }
        if (start+k > nums.size() || nums[start] * k > target || target > nums.back() * k) {
            return result;
        }

        for (int i = start; i < nums.size(); ++i) {
            if (i == start || nums[i - 1] != nums[i]) {
                for (auto &list : kSum(nums, i + 1, target - nums[i], k - 1)) {
                    list.push_back(nums[i]);
                    result.push_back(list);
                }
            }
        }
        return result;
    }
    vector<vector<int>> twoSumII(vector<int>& nums, int start, int target) {
        vector<vector<int>> result;
        unordered_set<int> s;
        for (auto i = start; i < nums.size(); ++i) {
            if (result.empty() || result.back()[1] != nums[i]) {
                int complement = target - nums[i];
                if (s.count(complement)) {
                    result.push_back({ complement, nums[i]});
                }
            }
            s.insert(nums[i]);
        }
        return result;
    }
};

kSum 问题总结

对于 kSum 这类问题,

  1. 如果求的是具体的位置,就不能 sort,因为排序后位置信息就丢失了
  2. 如果求位置,用 HashMap, 求组合本身,用 HashSet 就足够了
  3. 如果求的是组合本身且 k>2, 无论如何,先排序,然后再考虑用双指针或者 HashSet
  4. twoSumII()可以作为一个通用的底层函数,它往往有两种实现,双指针或者 HashSet(HashMap)
  5. twoSumII()的 HashSet 实现,比较直观的是两次遍历,可以优化成单次遍历。

2Sum求的是位置,因此不能 sort。用两轮循环暴力搜索,时间复杂度$O(n^2)$, 空间复杂度 O(1);如果用一个 HashMap 来缓存位置,时间复杂度可以降低到 O(n),代价是空间复杂度变为 O(n)。

2Sum II求的是组合本身,nums数组已排好序,因此就不必再排序了,直接用双指针左右夹逼,时间复杂度 O(n),空间复杂度 O(1);也可以用 HashSet,时间复杂度 O(n),空间复杂度 O(n),并没有比双指针快,却更占内存。因此这题最佳方法是双指针。

3Sum求的是组合本身且 k>2, 先排序,然后用双指针或者 HashSet 两种方法都可以。

4Sum求的是组合本身且 k>2, 先排序,然后用双指针或者 HashSet 两种方法都可以。

相关题目