17.18 Best Time to Buy and Sell Stock IV
优质
小牛编辑
128浏览
2023-12-01
Question
- leetcode: Best Time to Buy and Sell Stock IV | LeetCode OJ
- lintcode: (393) Best Time to Buy and Sell Stock IV
Say you have an array for
which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit.
You may complete at most k transactions.
Example
Given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.
Note
You may not engage in multiple transactions at the same time
(i.e., you must sell the stock before you buy again).
Challenge
O(nk) time.
题解1
卖股票系列中最难的一道,较易实现的方法为使用动态规划,动规的实现又分为大约3大类方法,这里先介绍一种最为朴素的方法,过不了大量数据,会 TLE.
最多允许 k 次交易,由于一次增加收益的交易至少需要两天,故当 k >= n/2时,此题退化为卖股票的第二道题,即允许任意多次交易。当 k < n/2 时,使用动规来求解,动规的几个要素如下:
f[i][j] 代表第 i 天为止交易 k 次获得的最大收益,那么将问题分解为前 x 天交易 k-1 次,第 x+1 天至第 i 天交易一次两个子问题,于是动态方程如下:
f[i][j] = max(f[x][j - 1] + profit(x + 1, i))
简便起见,初始化二维矩阵为0,下标尽可能从1开始,便于理解。
Python
class Solution:
"""
@param k: an integer
@param prices: a list of integer
@return: an integer which is maximum profit
"""
def maxProfit(self, k, prices):
if prices is None or len(prices) <= 1 or k <= 0:
return 0
n = len(prices)
# k >= prices.length / 2 ==> multiple transactions Stock II
if k >= n / 2:
profit_max = 0
for i in xrange(1, n):
diff = prices[i] - prices[i - 1]
if diff > 0:
profit_max += diff
return profit_max
f = [[0 for i in xrange(k + 1)] for j in xrange(n + 1)]
for j in xrange(1, k + 1):
for i in xrange(1, n + 1):
for x in xrange(0, i + 1):
f[i][j] = max(f[i][j], f[x][j - 1] + self.profit(prices, x + 1, i))
return f[n][k]
# calculate the profit of prices(l, u)
def profit(self, prices, l, u):
if l >= u:
return 0
valley = 2**31 - 1
profit_max = 0
for price in prices[l - 1:u]:
profit_max = max(profit_max, price - valley)
valley = min(valley, price)
return profit_max
C++
class Solution {
public:
/**
* @param k: An integer
* @param prices: Given an integer array
* @return: Maximum profit
*/
int maxProfit(int k, vector<int> &prices) {
if (prices.size() <= 1 || k <= 0) return 0;
int n = prices.size();
// k >= prices.length / 2 ==> multiple transactions Stock II
if (k >= n / 2) {
int profit_max = 0;
for (int i = 1; i < n; ++i) {
int diff = prices[i] - prices[i - 1];
if (diff > 0) {
profit_max += diff;
}
}
return profit_max;
}
vector<vector<int> > f = vector<vector<int> >(n + 1, vector<int>(k + 1, 0));
for (int j = 1; j <= k; ++j) {
for (int i = 1; i <= n; ++i) {
for (int x = 0; x <= i; ++x) {
f[i][j] = max(f[i][j], f[x][j - 1] + profit(prices, x + 1, i));
}
}
}
return f[n][k];
}
private:
int profit(vector<int> &prices, int l, int u) {
if (l >= u) return 0;
int valley = INT_MAX;
int profit_max = 0;
for (int i = l - 1; i < u; ++i) {
profit_max = max(profit_max, prices[i] - valley);
valley = min(valley, prices[i]);
}
return profit_max;
}
};
Java
class Solution {
/**
* @param k: An integer
* @param prices: Given an integer array
* @return: Maximum profit
*/
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length <= 1 || k <= 0) return 0;
int n = prices.length;
if (k >= n / 2) {
int profit_max = 0;
for (int i = 1; i < n; i++) {
if (prices[i] - prices[i - 1] > 0) {
profit_max += prices[i] - prices[i - 1];
}
}
return profit_max;
}
int[][] f = new int[n + 1][k + 1];
for (int j = 1; j <= k; j++) {
for (int i = 1; i <= n; i++) {
for (int x = 0; x <= i; x++) {
f[i][j] = Math.max(f[i][j], f[x][j - 1] + profit(prices, x + 1, i));
}
}
}
return f[n][k];
}
private int profit(int[] prices, int l, int u) {
if (l >= u) return 0;
int valley = Integer.MAX_VALUE;
int profit_max = 0;
for (int i = l - 1; i < u; i++) {
profit_max = Math.max(profit_max, prices[i] - valley);
valley = Math.min(valley, prices[i]);
}
return profit_max;
}
};
源码分析
注意 Python 中的多维数组初始化方式,不可简单使用[[0] * k] * n]
, 具体原因是因为 Python 中的对象引用方式。可以优化的地方是 profit 方法及最内存循环。
复杂度分析
三重循环,时间复杂度近似为 $$O(n^2 \cdot k)$$, 使用了 f 二维数组,空间复杂度为 $$O(n \cdot k)$$.