17.3 Backpack II
优质
小牛编辑
130浏览
2023-12-01
Question
- lintcode: (125) Backpack II
Problem Statement
Given n items with size $$Ai$$ and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?
Example
Given 4 items with size [2, 3, 5, 7]
and value [1, 5, 2, 4]
, and a backpack with size 10
. The maximum value is 9
.
Note
You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
Challenge
O(n x m) memory is acceptable, can you do it in O(m) memory?
题解
首先定义状态 $$K(i,w)$$ 为前 $$i$$ 个物品放入size为 $$w$$ 的背包中所获得的最大价值,则相应的状态转移方程为:
$$K(i,w) = \max {K(i-1, w), K(i-1, w - w_i) + v_i}$$
详细分析过程见 Knapsack
C++ - 2D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int N = A.size() + 1;
const int M = m + 1;
vector<vector<int> > result;
result.resize(N);
for (vector<int>::size_type i = 0; i != N; ++i) {
result[i].resize(M);
std::fill(result[i].begin(), result[i].end(), 0);
}
for (vector<int>::size_type i = 1; i != N; ++i) {
for (int j = 0; j != M; ++j) {
if (j < A[i - 1]) {
result[i][j] = result[i - 1][j];
} else {
int temp = result[i - 1][j - A[i - 1]] + V[i - 1];
result[i][j] = max(temp, result[i - 1][j]);
}
}
}
return result[N - 1][M - 1];
}
};
Java
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
if (A == null || V == null || A.length == 0 || V.length == 0) return 0;
final int N = A.length;
final int M = m;
int[][] bp = new int[N + 1][M + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= M; j++) {
if (A[i] > j) {
bp[i + 1][j] = bp[i][j];
} else {
bp[i + 1][j] = Math.max(bp[i][j], bp[i][j - A[i]] + V[i]);
}
}
}
return bp[N][M];
}
}
源码分析
- 使用二维矩阵保存结果result
- 返回result矩阵的右下角元素——背包size限制为m时的最大价值
按照第一题backpack的思路,这里可以使用一维数组进行空间复杂度优化。优化方法为逆序求result[j]
,优化后的代码如下:
C++ 1D vector for result
class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
if (A.empty() || V.empty() || m < 1) {
return 0;
}
const int M = m + 1;
vector<int> result;
result.resize(M);
std::fill(result.begin(), result.end(), 0);
for (vector<int>::size_type i = 0; i != A.size(); ++i) {
for (int j = m; j >= 0; --j) {
if (j < A[i]) {
// result[j] = result[j];
} else {
int temp = result[j - A[i]] + V[i];
result[j] = max(temp, result[j]);
}
}
}
return result[M - 1];
}
};