自定义层
优质
小牛编辑
135浏览
2023-12-01
对于简单的定制操作,我们或许可以通过使用
layers.core.Lambda
层来完成。但对于任何具有可训练权重的定制层,你应该自己来实现。
from keras import backend as K
from keras.engine.topology import Layer
import numpy as np
class MyLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x):
return K.dot(x, self.kernel)
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)