嵌入层
Embedding层
Embedding层只能作为模型的第一层。
较为费劲的就是第一句话:
嵌入层将正整数(下标)转换为具有固定大小的向量,如[[4],[20]]->[[0.25,0.1],[0.6,-0.2]]
哪到底咋转啊,亲?
这涉及到词向量,具体看可以参考Word2vec
上图的流程是把文章的单词使用词向量来表示。
(1)提取文章所有的单词,把其按其出现的次数降许(这里只取前50000个),比如单词‘network’出现的次数最多,编号ID为0,依次类推…
(2)每个编号ID都可以使用50000维的二进制(one-hot)表示
(3)最后,我们会生产一个矩阵M,行大小为词的个数50000,列大小为词向量的维度(通常取128或300),比如矩阵的第一行就是编号ID=0,即network对应的词向量。
那这个矩阵M怎么获得呢?在Skip-Gram 模型中,我们会随机初始化它,然后使用神经网络来训练这个权重矩阵
那我们的输入数据和标签是什么?如下图,输入数据就是中间的哪个蓝色的词对应的one-hot编码,标签就是它附近词的one-hot编码(这里windown_size=2,左右各取2个)
就上述的Word2Vec中的demo而言,它的单词表大小为1000,词向量的维度为300,所以Embedding的参数 input_dim=10000,output_dim=300
回到最初的问题:嵌入层将正整数(下标)转换为具有固定大小的向量,如[[4],[20]]->[[0.25,0.1],[0.6,-0.2]]
举个栗子:假如单词表的大小为1000,词向量维度为2,经单词频数统计后,tom对应的id=4,而jerry对应的id=20,经上述的转换后,我们会得到一个M1000×2的矩阵,而tom对应的是该矩阵的第4行,取出该行的数据就是[0.25,0.1]
如果输入数据不需要词的语义特征语义,简单使用Embedding层就可以得到一个对应的词向量矩阵,但如果需要语义特征,我们大可把以及训练好的词向量权重直接扔到Embedding层中即可,具体看参考keras提供的栗子:在Keras模型中使用预训练的词向量