机器学习:使用 NVIDIA JetsonTX2 - 安装TensorFlow
优质
小牛编辑
137浏览
2023-12-01
安装 TensorFlow
安装依赖套件
$ sudo apt-get install default-jdk libcupti-dev
$ export JAVA_HOME='/usr/lib/jvm/java-8-openjdk-arm64/'
取得 TensorFlow 编译脚本
$ git clone git://github.com/jetsonhacks/installTensorFlowTX2
$ cd installTensorFlowTX2
执行编译脚本
$ ./installPrerequisitesPy3.sh
$ ./cloneTensorFlow.sh
$ ./setTensorFlowEVPy3.sh
$ ./buildTensorFlow.sh
$ ./packageTensorFlow.sh
安装 TensorFlow
建立虚拟开发环境
$ virtualenv TensorFlow
进入虚拟开发环境
$ cd TensorFlow
$ source bin/active
安装 TensorFlow 到虚拟环境
pip3 install $HOME/<TensorFlow 的 .whl 安装封包>
测试 TensorFlow
Hello World
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow on NVIDIA Jetson TX2!')
sess = tf.Session()
print(sess.run(hello))
输出
Hello, TensorFlow on NVIDIA Jetson TX2!
运算单元
import tensorflow as tf
# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))
输出
name: NVIDIA Tegra X2
major: 6 minor: 2 memoryClockRate (GHz) 1.3005
MatMul: (MatMul): /job:localhost/replica:0/task:0/gpu:0
b: (Const): /job:localhost/replica:0/task:0/gpu:0
a: (Const): /job:localhost/replica:0/task:0/gpu:0
[[ 22. 28.]
[ 49. 64.]]