当前位置: 首页 > 数据结构 >

二叉排序树(二叉查找树)

精华
小牛编辑
158浏览
2023-03-14
前几节介绍的都是有关静态 查找表的相关知识,从本节开始介绍另外一种查找表—— 动态查找表

动态查找表中做查找操作时,若查找成功可以对其进行删除;如果查找失败,即表中无该关键字,可以将该关键字插入到表中。

动态查找表的表示方式有多种,本节介绍一种使用树结构表示动态查找表的实现方法—— 二叉排序树(又称为 “二叉查找树”)。

什么是二叉排序树?

二叉排序树要么是空 二叉树,要么具有如下特点:
  • 二叉排序树中,如果其根结点有左子树,那么左子树上所有结点的值都小于根结点的值;
  • 二叉排序树中,如果其根结点有右子树,那么右子树上所有结点的值都大小根结点的值;
  • 二叉排序树的左右子树也要求都是二叉排序树;
例如,图 1 就是一个二叉排序树:

图 1 二叉排序树

使用二叉排序树查找关键字

二叉排序树中查找某关键字时,查找过程类似于次优二叉树,在二叉排序树不为空树的前提下,首先将被查找值同树的根结点进行比较,会有 3 种不同的结果:
  • 如果相等,查找成功;
  • 如果比较结果为根结点的关键字值较大,则说明该关键字可能存在其左子树中;
  • 如果比较结果为根结点的关键字值较小,则说明该关键字可能存在其右子树中;
实现函数为:(运用递归的方法)
BiTree SearchBST(BiTree T,KeyType key){
    //如果递归过程中 T 为空,则查找结果,返回NULL;或者查找成功,返回指向该关键字的指针
    if (!T || key==T->data) {
        return T;
    }else if(key<T->data){
        //递归遍历其左孩子
        return SearchBST(T->lchild, key);
    }else{
        //递归遍历其右孩子
        return SearchBST(T->rchild, key);
    }
}

二叉排序树中插入关键字

二叉排序树本身是动态查找表的一种表示形式,有时会在查找过程中插入或者删除表中元素,当因为查找失败而需要插入数据元素时,该数据元素的插入位置一定位于二叉排序树的叶子结点,并且一定是查找失败时访问的最后一个结点的左孩子或者右孩子。
例如,在图 1 的二叉排序树中做查找关键字 1 的操作,当查找到关键字 3 所在的叶子结点时,判断出表中没有该关键字,此时关键字 1 的插入位置为关键字 3 的左孩子。

所以,二叉排序树表示动态查找表做插入操作,只需要稍微更改一下上面的代码就可以实现,具体实现代码为:
BOOL SearchBST(BiTree T,KeyType key,BiTree f,BiTree *p){
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T){
        *p=f;
        return false;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if(key==T->data){
        *p=T;
        return true;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if(key<T->data){
        return SearchBST(T->lchild,key,T,p);
    }else{
        return SearchBST(T->rchild,key,T,p);
    }
}
//插入函数
BOOL InsertBST(BiTree T,ElemType e){
    BiTree p=NULL;
    //如果查找不成功,需做插入操作
    if (!SearchBST(T, e,NULL,&p)) {
        //初始化插入结点
        BiTree s=(BiTree)malloc(sizeof(BiTree));
        s->data=e;
        s->lchild=s->rchild=NULL;
        //如果 p 为NULL,说明该二叉排序树为空树,此时插入的结点为整棵树的根结点
        if (!p) {
            T=s;
        }
        //如果 p 不为 NULL,则 p 指向的为查找失败的最后一个叶子结点,只需要通过比较 p 和 e 的值确定 s 到底是 p 的左孩子还是右孩子
        else if(e<p->data){
            p->lchild=s;
        }else{
            p->rchild=s;
        }
        return true;
    }
    //如果查找成功,不需要做插入操作,插入失败
    return false;
}
通过使用二叉排序树对动态查找表做查找和插入的操作,同时在中序遍历二叉排序树时,可以得到有关所有关键字的一个有序的序列。

例如,假设原二叉排序树为空树,在对动态查找表  {3,5,7,2,1} 做查找以及插入操作时,可以构建出一个含有表中所有关键字的二叉排序树,过程如图 2 所示:


图 2 二叉排序树插入过程

通过不断的查找和插入操作,最终构建的二叉排序树如图 2(5) 所示。当使用中序遍历算法遍历二叉排序树时,得到的序列为: 1 2 3 5 7 ,为有序序列。

一个无序序列可以通过构建一棵二叉排序树,从而变成一个有序序列。

二叉排序树中删除关键字

在查找过程中,如果在使用二叉排序树表示的动态查找表中删除某个数据元素时,需要在成功删除该结点的同时,依旧使这棵树为二叉排序树。

假设要删除的为结点 p,则对于二叉排序树来说,需要根据结点 p 所在不同的位置作不同的操作,有以下 3 种可能:

1、结点 p 为叶子结点,此时只需要删除该结点,并修改其双亲结点的指针即可;
2、结点 p 只有左子树或者只有右子树,如果 p 是其双亲节点的左孩子,则直接将 p 节点的左子树或右子树作为其双亲节点的左子树;反之也是如此,如果 p 是其双亲节点的右孩子,则直接将 p 节点的左子树或右子树作为其双亲节点的右子树;
3、结点 p 左右子树都有,此时有两种处理方式:
1)令结点 p 的左子树为其双亲结点的左子树;结点 p 的右子树为其自身直接前驱结点的右子树,如图 3 所示;
 

图 3 二叉排序树中删除结点(1)
 
2)用结点 p 的直接前驱(或直接后继)来代替结点 p,同时在二叉排序树中对其直接前驱(或直接后继)做删除操作。如图 4 为使用直接前驱代替结点 p:
 

图 4 二叉排序树中删除结点(2)

图 4 中,在对左图进行中序遍历时,得到的结点 p 的直接前驱结点为结点 s,所以直接用结点 s 覆盖结点 p,由于结点 s 还有左孩子,根据第 2 条规则,直接将其变为双亲结点的右孩子。

具体实现代码:(可运行)
#include<stdio.h>
#include<stdlib.h>
#define TRUE 1
#define FALSE 0
#define ElemType int
#define  KeyType int
/* 二叉排序树的节点结构定义 */
typedef struct BiTNode
{
    int data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;

//二叉排序树查找算法
int SearchBST(BiTree T, KeyType key, BiTree f, BiTree *p) {
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T) {
        *p = f;
        return FALSE;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if (key == T->data) {
        *p = T;
        return TRUE;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if (key < T->data) {
        return SearchBST(T->lchild, key, T, p);
    }
    else {
        return SearchBST(T->rchild, key, T, p);
    }
}
int InsertBST(BiTree *T, ElemType e) {
    BiTree p = NULL;
    //如果查找不成功,需做插入操作
    if (!SearchBST((*T), e, NULL, &p)) {
        //初始化插入结点
        BiTree s = (BiTree)malloc(sizeof(BiTNode));
        s->data = e;
        s->lchild = s->rchild = NULL;
        //如果 p 为NULL,说明该二叉排序树为空树,此时插入的结点为整棵树的根结点
        if (!p) {
            *T = s;
        }
        //如果 p 不为 NULL,则 p 指向的为查找失败的最后一个叶子结点,只需要通过比较 p 和 e 的值确定 s 到底是 p 的左孩子还是右孩子
        else if (e < p->data) {
            p->lchild = s;
        }
        else {
            p->rchild = s;
        }
        return TRUE;
    }
    //如果查找成功,不需要做插入操作,插入失败
    return FALSE;
}
//删除函数
int Delete(BiTree *p)
{
    BiTree q, s;
    //情况 1,结点 p 本身为叶子结点,直接删除即可
    if (!(*p)->lchild && !(*p)->rchild) {
        *p = NULL;
    }
    else if (!(*p)->lchild) { //左子树为空,只需用结点 p 的右子树根结点代替结点 p 即可;
        q = *p;
        *p = (*p)->rchild;
        free(q);
    }
    else if (!(*p)->rchild) {//右子树为空,只需用结点 p 的左子树根结点代替结点 p 即可;
        q = *p;
        *p = (*p)->lchild;//这里不是指针 *p 指向左子树,而是将左子树存储的结点的地址赋值给指针变量 p
        free(q);
    }
    else {//左右子树均不为空,采用第 2 种方式
        q = *p;
        s = (*p)->lchild;
        //遍历,找到结点 p 的直接前驱
        while (s->rchild)
        {
            q = s;
            s = s->rchild;
        }
        //直接改变结点 p 的值
        (*p)->data = s->data;
        //判断结点 p 的左子树 s 是否有右子树,分为两种情况讨论
        if (q != *p) {
            q->rchild = s->lchild;//若有,则在删除直接前驱结点的同时,令前驱的左孩子结点改为 q 指向结点的孩子结点
        }
        else {
            q->lchild = s->lchild;//否则,直接将左子树上移即可
        }
        free(s);
    }
    return TRUE;
}
int DeleteBST(BiTree *T, int key)
{
    if (!(*T)) {//不存在关键字等于key的数据元素
        return FALSE;
    }
    else
    {
        if (key == (*T)->data) {
            Delete(T);
            return TRUE;
        }
        else if (key < (*T)->data) {
            //使用递归的方式
            return DeleteBST(&(*T)->lchild, key);
        }
        else {
            return DeleteBST(&(*T)->rchild, key);
        }
    }
}
void order(BiTree t)//中序输出
{
    if (t == NULL) {
        return;
    }
    order(t->lchild);
    printf("%d ", t->data);
    order(t->rchild);
}
int main()
{
    int i;
    int a[5] = { 3,4,2,5,9 };
    BiTree T = NULL;
    for (i = 0; i < 5; i++) {
        InsertBST(&T, a[i]);
    }
    printf("中序遍历二叉排序树:\n");
    order(T);
    printf("\n");
    printf("删除3后,中序遍历二叉排序树:\n");
    DeleteBST(&T, 3);
    order(T);
}
运行结果:
中序遍历二叉排序树:
2 3 4 5 9
删除3后,中序遍历二叉排序树:
2 4 5 9

总结

使用二叉排序树在查找表中做查找操作的 时间复杂度同建立的二叉树本身的结构有关。即使查找表中各数据元素完全相同,但是不同的排列顺序,构建出的二叉排序树大不相同。
例如:查找表  {45,24,53,12,37,93} 和表  {12,24,37,45,53,93} 各自构建的二叉排序树图下图所示:


图 5 不同构造的二叉排序树

使用二叉排序树实现动态查找操作的过程,实际上就是从二叉排序树的根结点到查找元素结点的过程,所以时间复杂度同被查找元素所在的树的深度(层次数)有关。

为了弥补二叉排序树构造时产生如图 5 右侧所示的影响算法效率的因素,需要对二叉排序树做“平衡化”处理,使其成为一棵平衡二叉树。
平衡二叉树是动态查找表的另一种实现方式,下一节做重点介绍。