当前位置: 首页 > 文档资料 > 数据结构和算法 >

表达式解析(Expression Parsing)

优质
小牛编辑
134浏览
2023-12-01

编写算术表达式的方法称为notation 。 算术表达式可以用三种不同但等效的符号书写,即不改变表达式的本质或输出。 这些符号是 -

  • Infix Notation
  • 前缀(波兰语)表示法
  • 后缀(反向波兰)表示法

这些符号被命名为它们如何在表达式中使用运算符。 我们将在本章中学到相同的内容。

中缀表示法

我们用中infix表示法编写表达式,例如a - b + c,其中运算符用in操作数之间。 我们人类很容易用中缀符号进行读,写和说话,但同样适用于计算设备。 在时间和空间消耗方面,处理中缀符号的算法可能是困难且昂贵的。

前缀表示法

在这种表示法中,运算符是操作数的prefix ,即操作符在操作数之前写入。 例如, +ab 。 这相当于其中缀符号a + b 。 前缀表示法也称为Polish Notation

后缀表示法

这种符号样式称为Reversed Polish Notation 。 在这种表示法样式中,运算符postfix为操作数,即操作符在操作数之后写入。 例如, ab+ 。 这相当于其中缀符号a + b

下表简要介绍了所有三种符号的区别 -

Sr.No.中缀表示法前缀表示法后缀表示法
1a + b+ abab +
2(a + b)* c* + abcab + c *
3a *(b + c)* a + bcabc + *
4a/b + c/d+/ab/cdab/cd/+
5(a + b)*(c + d)* + ab + cdab + cd + *
6((a + b)* c) - d- * + abcdab + c * d -

解析表达式

正如我们已经讨论过的,设计一个解析中缀符号的算法或程序并不是一种非常有效的方法。 相反,这些中缀符号首先转换为后缀或前缀表示法,然后进行计算。

要解析任何算术表达式,我们还需要处理运算符优先级和关联性。

优先级 Precedence

当操作数位于两个不同的运算符之间时,哪个运算符将首先取操作数,由运算符优先于其他运算符决定。 例如 -

运算符优先

由于乘法运算优先于加法,因此将首先计算b * c。 稍后提供运算符优先级表。

结合性 Associativity

关联性描述了具有相同优先级的运算符出现在表达式中的规则。 例如,在表达式a + b -c中,+和 - 具有相同的优先级,然后表达式的哪个部分将首先被评估,由这些运算符的关联性决定。 这里,+和 - 都是左关联的,因此表达式将被评估为(a + b) − c

优先级和关联性决定了表达式的评估顺序。 以下是运算符优先级和关联表(从最高到最低) -

Sr.No.操作者优先权关联性
1Exponentiation ^HighestRight Associative
2乘法(*)和除法(/)Second HighestLeft Associative
3加法(+)和减法( - )LowestLeft Associative

上表显示了运算符的默认行为。 在表达式评估的任何时间点,可以使用括号来更改顺序。 例如 -

a + b*c ,首先评估表达式部分b * c ,乘法作为加法的优先级。 我们在这里使用括号来首先评估(a + b)*c ,如(a + b)*c

后缀评估算法

我们现在来看看如何评估后缀表示法的算法 -

Step 1 − scan the expression from left to right 
Step 2 − if it is an operand push it to stack 
Step 3 − if it is an operator pull operand from stack and perform operation 
Step 4 − store the output of step 3, back to stack 
Step 5 − scan the expression until all operands are consumed 
Step 6 − pop the stack and perform operation

要查看C编程语言的实现,请单击此处