二进制搜索(Binary Search)
优质
小牛编辑
148浏览
2023-12-01
二进制搜索是一种快速搜索算法,运行时复杂度为Ο(log n)。 这种搜索算法的工作原则是分而治之。 为使此算法正常工作,数据收集应采用排序形式。
二进制搜索通过比较集合的最中间项来查找特定项。 如果匹配发生,则返回项目的索引。 如果中间项大于项,则在中间项左侧的子阵列中搜索项。 否则,在中间项右侧的子阵列中搜索项。 该过程也在子阵列上继续,直到子阵列的大小减小到零。
二进制搜索如何工作?
要使二进制搜索起作用,必须对目标数组进行排序。 我们将通过一个图例来学习二元搜索的过程。 以下是我们的排序数组,让我们假设我们需要使用二进制搜索来搜索值31的位置。
首先,我们将使用此公式确定数组的一半 -
mid = low + (high - low)/2
这里,0 +(9-0)/ 2 = 4(整数值为4.5)。 所以,4是数组的中间位置。
现在我们将存储在位置4的值与搜索的值进行比较,即31.我们发现位置4的值是27,这不匹配。 由于值大于27并且我们有一个排序数组,因此我们也知道目标值必须位于数组的上半部分。
我们将低点改为+1,再次找到新的中值。
low = mid + 1
mid = low + (high - low)/2
我们新的中期现在是7。 我们将位置7处存储的值与目标值31进行比较。
存储在位置7的值不匹配,而是比我们正在寻找的值更多。 因此,该值必须位于此位置的下半部分。
因此,我们再次计算中期。 这次是5。
我们将位置5处存储的值与目标值进行比较。 我们发现这是一场比赛。
我们得出结论,目标值31存储在位置5处。
二进制搜索将可搜索项目减半,从而减少了对更少数字进行比较的次数。
伪代码 (Pseudocode)
二进制搜索算法的伪代码应如下所示 -
Procedure binary_search
A ← sorted array
n ← size of array
x ← value to be searched
Set lowerBound = 1
Set upperBound = n
while x not found
if upperBound < lowerBound
EXIT: x does not exists.
set midPoint = lowerBound + ( upperBound - lowerBound )/2
if A[midPoint] < x
set lowerBound = midPoint + 1
if A[midPoint] > x
set upperBound = midPoint - 1
if A[midPoint] = x
EXIT: x found at location midPoint
end while
end procedure
要了解使用C编程语言中的数组进行二进制搜索实现,请单击此处 。