数学基础

优质
小牛编辑
144浏览
2023-12-01

本节总结了本书中涉及的有关线性代数、微分和概率的基础知识。为避免赘述本书未涉及的数学背景知识,本节中的少数定义稍有简化。

线性代数

下面分别概括了向量、矩阵、运算、范数、特征向量和特征值的概念。

向量

本书中的向量指的是列向量。一个$n$维向量$\boldsymbol{x}$的表达式可写成

$$\boldsymbol{x} = \begin{bmatrix} x{1} \ x{2} \ \vdots \ x_{n} \end{bmatrix}, $$

其中$x_1, \ldots, x_n$是向量的元素。我们将各元素均为实数的$n$维向量$\boldsymbol{x}$记作$\boldsymbol{x} \in \mathbb{R}^{n}$或$\boldsymbol{x} \in \mathbb{R}^{n \times 1}$。

矩阵

一个$m$行$n$列矩阵的表达式可写成

$$\boldsymbol{X} = \begin{bmatrix} x{11} & x{12} & \dots & x{1n} \ x{21} & x{22} & \dots & x{2n} \ \vdots & \vdots & \ddots & \vdots \ x{m1} & x{m2} & \dots & x_{mn} \end{bmatrix}, $$

其中$x_{ij}$是矩阵$\boldsymbol{X}$中第$i$行第$j$列的元素($1 \leq i \leq m, 1 \leq j \leq n$)。我们将各元素均为实数的$m$行$n$列矩阵$\boldsymbol{X}$记作$\boldsymbol{X} \in \mathbb{R}^{m \times n}$。不难发现,向量是特殊的矩阵。

运算

设$n$维向量$\boldsymbol{a}$中的元素为$a_1, \ldots, a_n$,$n$维向量$\boldsymbol{b}$中的元素为$b_1, \ldots, b_n$。向量$\boldsymbol{a}$与$\boldsymbol{b}$的点乘(内积)是一个标量:

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + \ldots + a_n b_n.$$

设两个$m$行$n$列矩阵

$$\boldsymbol{A} = \begin{bmatrix} a{11} & a{12} & \dots & a{1n} \ a{21} & a{22} & \dots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{m1} & a{m2} & \dots & a{mn} \end{bmatrix},\quad \boldsymbol{B} = \begin{bmatrix} b{11} & b{12} & \dots & b{1n} \ b{21} & b{22} & \dots & b{2n} \ \vdots & \vdots & \ddots & \vdots \ b{m1} & b{m2} & \dots & b{mn} \end{bmatrix}. $$

矩阵$\boldsymbol{A}$的转置是一个$n$行$m$列矩阵,它的每一行其实是原矩阵的每一列: $$ \boldsymbol{A}^\top = \begin{bmatrix} a{11} & a{21} & \dots & a{m1} \ a{12} & a{22} & \dots & a{m2} \ \vdots & \vdots & \ddots & \vdots \ a{1n} & a{2n} & \dots & a_{mn} \end{bmatrix}. $$

两个相同形状的矩阵的加法是将两个矩阵按元素做加法:

$$\boldsymbol{A} + \boldsymbol{B} = \begin{bmatrix} a{11} + b{11} & a{12} + b{12} & \dots & a{1n} + b{1n} \ a{21} + b{21} & a{22} + b{22} & \dots & a{2n} + b{2n} \ \vdots & \vdots & \ddots & \vdots \ a{m1} + b{m1} & a{m2} + b{m2} & \dots & a{mn} + b{mn} \end{bmatrix}. $$

我们使用符号$\odot$表示两个矩阵按元素做乘法的运算:

$$\boldsymbol{A} \odot \boldsymbol{B} = \begin{bmatrix} a{11} b{11} & a{12} b{12} & \dots & a{1n} b{1n} \ a{21} b{21} & a{22} b{22} & \dots & a{2n} b{2n} \ \vdots & \vdots & \ddots & \vdots \ a{m1} b{m1} & a{m2} b{m2} & \dots & a{mn} b{mn} \end{bmatrix}. $$

定义一个标量$k$。标量与矩阵的乘法也是按元素做乘法的运算:

$$k\boldsymbol{A} = \begin{bmatrix} ka{11} & ka{12} & \dots & ka{1n} \ ka{21} & ka{22} & \dots & ka{2n} \ \vdots & \vdots & \ddots & \vdots \ ka{m1} & ka{m2} & \dots & ka_{mn} \end{bmatrix}. $$

其他诸如标量与矩阵按元素相加、相除等运算与上式中的相乘运算类似。矩阵按元素开根号、取对数等运算也就是对矩阵每个元素开根号、取对数等,并得到和原矩阵形状相同的矩阵。

矩阵乘法和按元素的乘法不同。设$\boldsymbol{A}$为$m$行$p$列的矩阵,$\boldsymbol{B}$为$p$行$n$列的矩阵。两个矩阵相乘的结果

$$\boldsymbol{A} \boldsymbol{B} = \begin{bmatrix} a{11} & a{12} & \dots & a{1p} \ a{21} & a{22} & \dots & a{2p} \ \vdots & \vdots & \ddots & \vdots \ a{i1} & a{i2} & \dots & a{ip} \ \vdots & \vdots & \ddots & \vdots \ a{m1} & a{m2} & \dots & a{mp} \end{bmatrix} \begin{bmatrix} b{11} & b{12} & \dots & b{1j} & \dots & b{1n} \ b{21} & b{22} & \dots & b{2j} & \dots & b{2n} \ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \ b{p1} & b{p2} & \dots & b{pj} & \dots & b{pn} \end{bmatrix} $$

是一个$m$行$n$列的矩阵,其中第$i$行第$j$列($1 \leq i \leq m, 1 \leq j \leq n$)的元素为

$$a{i1}b{1j} + a{i2}b{2j} + \ldots + a{ip}b{pj} = \sum{k=1}^p a{ik}b_{kj}. $$

范数

设$n$维向量$\boldsymbol{x}$中的元素为$x_1, \ldots, x_n$。向量$\boldsymbol{x}$的$L_p$范数为

$$|\boldsymbol{x}|p = \left(\sum{i=1}^n \left|x_i \right|^p \right)^{1/p}.$$

例如,$\boldsymbol{x}$的$L_1$范数是该向量元素绝对值之和:

$$|\boldsymbol{x}|1 = \sum{i=1}^n \left|x_i \right|.$$

而$\boldsymbol{x}$的$L_2$范数是该向量元素平方和的平方根:

$$|\boldsymbol{x}|2 = \sqrt{\sum{i=1}^n x_i^2}.$$

我们通常用$|\boldsymbol{x}|$指代$|\boldsymbol{x}|_2$。

设$\boldsymbol{X}$是一个$m$行$n$列矩阵。矩阵$\boldsymbol{X}$的Frobenius范数为该矩阵元素平方和的平方根:

$$|\boldsymbol{X}|F = \sqrt{\sum{i=1}^m \sum{j=1}^n x{ij}^2},$$

其中$x_{ij}$为矩阵$\boldsymbol{X}$在第$i$行第$j$列的元素。

特征向量和特征值

对于一个$n$行$n$列的矩阵$\boldsymbol{A}$,假设有标量$\lambda$和非零的$n$维向量$\boldsymbol{v}$使

$$\boldsymbol{A} \boldsymbol{v} = \lambda \boldsymbol{v},$$

那么$\boldsymbol{v}$是矩阵$\boldsymbol{A}$的一个特征向量,标量$\lambda$是$\boldsymbol{v}$对应的特征值。

微分

我们在这里简要介绍微分的一些基本概念和演算。

导数和微分

假设函数$f: \mathbb{R} \rightarrow \mathbb{R}$的输入和输出都是标量。函数$f$的导数

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h},$$

且假定该极限存在。给定$y = f(x)$,其中$x$和$y$分别是函数$f$的自变量和因变量。以下有关导数和微分的表达式等价:

$$f'(x) = y' = \frac{\text{d}y}{\text{d}x} = \frac{\text{d}f}{\text{d}x} = \frac{\text{d}}{\text{d}x} f(x) = \text{D}f(x) = \text{D}_x f(x),$$

其中符号$\text{D}$和$\text{d}/\text{d}x$也叫微分运算符。常见的微分演算有$\text{D}C = 0$($C$为常数)、$\text{D}x^n = nx^{n-1}$($n$为常数)、$\text{D}e^x = e^x$、$\text{D}\ln(x) = 1/x$等。

如果函数$f$和$g$都可导,设$C$为常数,那么

$$\begin{aligned} \frac{\text{d}}{\text{d}x} [Cf(x)] &= C \frac{\text{d}}{\text{d}x} f(x),\ \frac{\text{d}}{\text{d}x} [f(x) + g(x)] &= \frac{\text{d}}{\text{d}x} f(x) + \frac{\text{d}}{\text{d}x} g(x),\ \frac{\text{d}}{\text{d}x} [f(x)g(x)] &= f(x) \frac{\text{d}}{\text{d}x} [g(x)] + g(x) \frac{\text{d}}{\text{d}x} [f(x)],\ \frac{\text{d}}{\text{d}x} \left[\frac{f(x)}{g(x)}\right] &= \frac{g(x) \frac{\text{d}}{\text{d}x} [f(x)] - f(x) \frac{\text{d}}{\text{d}x} [g(x)]}{[g(x)]^2}. \end{aligned} $$

如果$y=f(u)$和$u=g(x)$都是可导函数,依据链式法则,

$$\frac{\text{d}y}{\text{d}x} = \frac{\text{d}y}{\text{d}u} \frac{\text{d}u}{\text{d}x}.$$

泰勒展开

函数$f$的泰勒展开式是

$$f(x) = \sum_{n=0}^\infty \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

其中$f^{(n)}$为函数$f$的$n$阶导数(求$n$次导数),$n!$为$n$的阶乘。假设$\epsilon$是一个足够小的数,如果将上式中$x$和$a$分别替换成$x+\epsilon$和$x$,可以得到

$$f(x + \epsilon) \approx f(x) + f'(x) \epsilon + \mathcal{O}(\epsilon^2).$$

由于$\epsilon$足够小,上式也可以简化成

$$f(x + \epsilon) \approx f(x) + f'(x) \epsilon.$$

偏导数

设$u$为一个有$n$个自变量的函数,$u = f(x_1, x_2, \ldots, x_n)$,它有关第$i$个变量$x_i$的偏导数为

$$ \frac{\partial u}{\partial xi} = \lim{h \rightarrow 0} \frac{f(x1, \ldots, x{i-1}, xi+h, x{i+1}, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h}.$$

以下有关偏导数的表达式等价:

$$\frac{\partial u}{\partial x_i} = \frac{\partial f}{\partial xi} = f{x_i} = f_i = \text{D}i f = \text{D}{x_i} f.$$

为了计算$\partial u/\partial x_i$,只需将$x1, \ldots, x{i-1}, x_{i+1}, \ldots, x_n$视为常数并求$u$有关$x_i$的导数。

梯度

假设函数$f: \mathbb{R}^n \rightarrow \mathbb{R}$的输入是一个$n$维向量$\boldsymbol{x} = [x_1, x_2, \ldots, x_n]^\top$,输出是标量。函数$f(\boldsymbol{x})$有关$\boldsymbol{x}$的梯度是一个由$n$个偏导数组成的向量:

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \bigg[\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \frac{\partial f(\boldsymbol{x})}{\partial x_2}, \ldots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\bigg]^\top.$$

为表示简洁,我们有时用$\nabla f(\boldsymbol{x})$代替$\nabla_{\boldsymbol{x}} f(\boldsymbol{x})$。

假设$\boldsymbol{x}$是一个向量,常见的梯度演算包括

$$\begin{aligned} \nabla{\boldsymbol{x}} \boldsymbol{A}^\top \boldsymbol{x} &= \boldsymbol{A}, \ \nabla{\boldsymbol{x}} \boldsymbol{x}^\top \boldsymbol{A} &= \boldsymbol{A}, \ \nabla{\boldsymbol{x}} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x} &= (\boldsymbol{A} + \boldsymbol{A}^\top)\boldsymbol{x},\ \nabla{\boldsymbol{x}} |\boldsymbol{x} |^2 &= \nabla_{\boldsymbol{x}} \boldsymbol{x}^\top \boldsymbol{x} = 2\boldsymbol{x}. \end{aligned} $$

类似地,假设$\boldsymbol{X}$是一个矩阵,那么 $$\nabla_{\boldsymbol{X}} |\boldsymbol{X} |_F^2 = 2\boldsymbol{X}.$$

海森矩阵

假设函数$f: \mathbb{R}^n \rightarrow \mathbb{R}$的输入是一个$n$维向量$\boldsymbol{x} = [x_1, x_2, \ldots, x_n]^\top$,输出是标量。假定函数$f$所有的二阶偏导数都存在,$f$的海森矩阵$\boldsymbol{H}$是一个$n$行$n$列的矩阵:

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \ \vdots & \vdots & \ddots & \vdots \ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}, $$

其中二阶偏导数

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial }{\partial x_j} \left(\frac{\partial f}{ \partial x_i}\right).$$

概率

最后,我们简要介绍条件概率、期望和均匀分布。

条件概率

假设事件$A$和事件$B$的概率分别为$P(A)$和$P(B)$,两个事件同时发生的概率记作$P(A \cap B)$或$P(A, B)$。给定事件$B$,事件$A$的条件概率

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

也就是说,

$$P(A \cap B) = P(B) P(A \mid B) = P(A) P(B \mid A).$$

当满足

$$P(A \cap B) = P(A) P(B)$$

时,事件$A$和事件$B$相互独立。

期望

离散的随机变量$X$的期望(或平均值)为

$$E(X) = \sum_{x} x P(X = x).$$

均匀分布

假设随机变量$X$服从$[a, b]$上的均匀分布,即$X \sim U(a, b)$。随机变量$X$取$a$和$b$之间任意一个数的概率相等。

小结

  • 本节总结了本书中涉及的有关线性代数、微分和概率的基础知识。

练习

  • 求函数$f(\boldsymbol{x}) = 3x_1^2 + 5e^{x_2}$的梯度。