答:全连接DNN(相邻层互相连接,层内无连接)
AutoEncoder(尽可能还原输入)、Sparse Coding(在AE上加入L1规范)、RBM(解决概率问题)---->>特征检测---->>栈式叠加贪心训练
RBM---->DBM
解决全连接DNN的全连接问题---->CNN
解决全连接DNN的无法对时间序列上变化进行建模的问题---->RNN----解决时间轴上的梯度消失问题---->>LSTM
DNN是传统的全连接网络,可以用于广告点击预估,推荐等。其使用embedding的方式将很多离散的特征编码到神经网络中,可以很大的提升结果
CNN主要用于计算机视觉(Computer Vision)领域,CNN的出现主要解决了DNN在图像领域中参数过多的问题。同时,CNN特有的卷积,池化、batch normalization、Inception、ResNet、DeepNet等一系列的发展使得在分类、物体检测、人脸识别、图像分割等众多领域有了长足的进步。同时,CNN不仅在图像上应用很多,在自然语言处理上也颇有进展,现在已经有基于CNN的语言模型可以比LSTM更好的效果。在最新的AlphaZero中,CNN中的ResNet也是两种基本算法之一
GAN是一种应用在生成模型的训练方法现在有很多在CV方面的应用,例如图像翻译,图像超清化,图像修复等等
RNN主要应用于NLP领域,用于处理序列到序列的问题。普通RNN会遇到梯度爆炸和梯度消失的问题。所以现在在NLP领域,一般会使用LSTM模型。在最近的机器翻译领域,Attention作为一种新的手段,也被引入进来
除了DNN、RNN和CNN外,自动编码器(AutoEncoder)、稀疏编码(SparseCoding)、深度信念网络(DBM)、限制玻尔兹曼(RBM)也都有相应的研究
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推
Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code
现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不
深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。
Python 是一种通用的高级编程语言,广泛用于数据科学和生成深度学习算法。这个简短的教程介绍了 Python 及其库,如 Numpy,Scipy,Pandas,Matplotlib,像 Theano,TensorFlow,Keras 这样的框架。
你拿起这本书的时候,可能已经知道深度学习近年来在人工智能领域所取得的非凡进展。在图像识别和语音转录的任务上,五年前的模型还几乎无法使用,如今的模型的表现已经超越了人类。