import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
下文作如下说明:
让我们尝试一个随机的32x32输入。注:此网的预期输入大小(LeNet)为32x32。若要在MNIST数据集中使用此网络,请将数据集中的图像大小调整为32x32。
问题1:为什么图像需要32x32(我假设这意味着32像素乘32)?
在第一个卷积层,我们从一个输入通道到六个输入通道,这对我来说是有意义的。您只需将六个内核应用于单个输入通道,即可得到六个输出通道。从六个输入通道到十六个输出通道对我来说没有那么大的意义。不同的内核是如何应用的?您是否将两个核应用于前五个输入通道以到达十个输出通道,而将六个核应用于最后一个输入通道,从而使总数达到十六个输出通道?还是神经网络学习自己使用x内核,并将它们应用到它发现最合适的输入通道上?
我现在可以自己回答这些问题了。
问题1:要了解为什么需要32x32图像来使神经网络工作,请考虑以下内容:
第1层:首先,卷积应用3x3内核。由于图像的尺寸为32x32,这将导致网格为30x30。接下来,将最大池应用于网格,使用2x2内核和步幅2,生成一个维度为15x15的网格。
神经网络和深度学习是一本免费的在线书。本书会教会你: 神经网络,一种美妙的受生物学启发的编程范式,可以让计算机从观测数据中进行学习 深度学习,一个强有力的用于神经网络学习的众多技术的集合 神经网络和深度学习目前给出了在图像识别、语音识别和自然语言处理领域中很多问题的最好解决方案。本书将会教你在神经网络和深度学习背后的众多核心概念。 想了解本书选择的观点的更多细节,请看这里。或者直接跳到第一章 开始
深度神经网络的工作地点、原因和方式。从大脑中获取灵感。卷积神经网络(CNN)和循环神经网络(RNN)。真实世界中的应用。 使用深度学习,我们仍然是习得一个函数f,将输入X映射为输出Y,并使测试数据上的损失最小,就像我们之前那样。回忆一下,在 2.1 节监督学习中,我们的初始“问题陈述”: Y = f(X) + ϵ 训练:机器从带标签的训练数据习得f 测试:机器从不带标签的测试数据预测Y 真实世界很
译者:bdqfork 作者: Robert Guthrie 深度学习构建模块:仿射映射, 非线性函数以及目标函数 深度学习表现为使用更高级的方法将线性函数和非线性函数进行组合。非线性函数的引入使得训练出来的模型更加强大。在本节中,我们将学习这些核心组件,建立目标函数,并理解模型是如何构建的。 仿射映射 深度学习的核心组件之一是仿射映射,仿射映射是一个关于矩阵A和向量x,b的*f(x)*函数,如下所
LeNet 5 LeNet-5是第一个成功的卷积神经网络,共有7层,不包含输入,每层都包含可训练参数(连接权重)。 AlexNet tf AlexNet可以认为是增强版的LeNet5,共8层,其中前5层convolutional,后面3层是full-connected。 GooLeNet (Inception v2) GoogLeNet用了很多相同的层,共22层,并将全连接层变为稀疏链接层。 In
本文向大家介绍TensorFlow深度学习之卷积神经网络CNN,包括了TensorFlow深度学习之卷积神经网络CNN的使用技巧和注意事项,需要的朋友参考一下 一、卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度
我计划编写一个国际象棋引擎,它使用深度卷积神经网络来评估国际象棋的位置。我将使用位板来表示棋盘状态,这意味着输入层应该有12*64个神经元用于位置,1个用于玩家移动(0表示黑色,1表示白色)和4个神经元用于铸币权(wks、bks、wqs、bqs)。将有两个隐藏层,每个层有515个神经元,一个输出神经元的值介于-1表示黑色获胜,1表示白色获胜,0表示相等的位置。所有神经元都将使用tanh()激活函数