AdaDelta算法

优质
小牛编辑
129浏览
2023-12-01

除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数。

算法

AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度$\boldsymbol{g}_t$按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$。在时间步0,它的所有元素被初始化为0。给定超参数$0 \leq \rho < 1$(对应RMSProp算法中的$\gamma$),在时间步$t>0$,同RMSProp算法一样计算

$$\boldsymbol{s}t \leftarrow \rho \boldsymbol{s}{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. $$

与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量$\Delta\boldsymbol{x}t$,其元素同样在时间步0时被初始化为0。我们使用$\Delta\boldsymbol{x}{t-1}$来计算自变量的变化量:

$$ \boldsymbol{g}t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, $$

其中$\epsilon$是为了维持数值稳定性而添加的常数,如$10^{-5}$。接着更新自变量:

$$\boldsymbol{x}t \leftarrow \boldsymbol{x}{t-1} - \boldsymbol{g}'_t. $$

最后,我们使用$\Delta\boldsymbol{x}_t$来记录自变量变化量$\boldsymbol{g}'_t$按元素平方的指数加权移动平均:

$$\Delta\boldsymbol{x}t \leftarrow \rho \Delta\boldsymbol{x}{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. $$

可以看到,如不考虑$\epsilon$的影响,AdaDelta算法与RMSProp算法的不同之处在于使用$\sqrt{\Delta\boldsymbol{x}_{t-1}}$来替代超参数$\eta$。

从零开始实现

AdaDelta算法需要对每个自变量维护两个状态变量,即$\boldsymbol{s}_t$和$\Delta\boldsymbol{x}_t$。我们按AdaDelta算法中的公式实现该算法。

%matplotlib inline
import d2lzh as d2l
from mxnet import nd

features, labels = d2l.get_data_ch7()

def init_adadelta_states():
    s_w, s_b = nd.zeros((features.shape[1], 1)), nd.zeros(1)
    delta_w, delta_b = nd.zeros((features.shape[1], 1)), nd.zeros(1)
    return ((s_w, delta_w), (s_b, delta_b))

def adadelta(params, states, hyperparams):
    rho, eps = hyperparams['rho'], 1e-5
    for p, (s, delta) in zip(params, states):
        s[:] = rho * s + (1 - rho) * p.grad.square()
        g = ((delta + eps).sqrt() / (s + eps).sqrt()) * p.grad
        p[:] -= g
        delta[:] = rho * delta + (1 - rho) * g * g

使用超参数$\rho=0.9$来训练模型。

d2l.train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features,
              labels)

简洁实现

通过名称为“adadelta”的Trainer实例,我们便可使用Gluon提供的AdaDelta算法。它的超参数可以通过rho来指定。

d2l.train_gluon_ch7('adadelta', {'rho': 0.9}, features, labels)

小结

  • AdaDelta算法没有学习率超参数,它通过使用有关自变量更新量平方的指数加权移动平均的项来替代RMSProp算法中的学习率。

练习

  • 调节AdaDelta算法中超参数$\rho$的值,观察实验结果。

参考文献

[1] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.