微调

优质
小牛编辑
130浏览
2023-12-01

在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。

假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞大,但样本数仍然不及ImageNet数据集中样本数的十分之一。这可能会导致适用于ImageNet数据集的复杂模型在这个椅子数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

为了应对上述问题,一个显而易见的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资金。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。

另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。

本节我们介绍迁移学习中的一种常用技术:微调(fine tuning)。如图9.1所示,微调由以下4步构成。

  1. 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
  2. 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
  3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
  4. 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

热狗识别

接下来我们来实践一个具体的例子:热狗识别。我们将基于一个小数据集对在ImageNet数据集上训练好的ResNet模型进行微调。该小数据集含有数千张包含热狗和不包含热狗的图像。我们将使用微调得到的模型来识别一张图像中是否包含热狗。

首先,导入实验所需的包或模块。Gluon的model_zoo包提供了常用的预训练模型。如果希望获取更多的计算机视觉的预训练模型,可以使用GluonCV工具包 [1]。

%matplotlib inline
import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import data as gdata, loss as gloss, model_zoo
from mxnet.gluon import utils as gutils
import os
import zipfile

获取数据集

我们使用的热狗数据集是从网上抓取的,它含有1400张包含热狗的正类图像,和同样多包含其他食品的负类图像。各类的1000张图像被用于训练,其余则用于测试。

我们首先将压缩后的数据集下载到路径../data之下,然后在该路径将下载好的数据集解压,得到两个文件夹hotdog/trainhotdog/test。这两个文件夹下面均有hotdognot-hotdog两个类别文件夹,每个类别文件夹里面是图像文件。

data_dir = '../data'
base_url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/'
fname = gutils.download(
    base_url + 'gluon/dataset/hotdog.zip',
    path=data_dir, sha1_hash='fba480ffa8aa7e0febbb511d181409f899b9baa5')
with zipfile.ZipFile(fname, 'r') as z:
    z.extractall(data_dir)

我们创建两个ImageFolderDataset实例来分别读取训练数据集和测试数据集中的所有图像文件。

train_imgs = gdata.vision.ImageFolderDataset(
    os.path.join(data_dir, 'hotdog/train'))
test_imgs = gdata.vision.ImageFolderDataset(
    os.path.join(data_dir, 'hotdog/test'))

下面画出前8张正类图像和最后8张负类图像。可以看到,它们的大小和高宽比各不相同。

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

在训练时,我们先从图像中裁剪出随机大小和随机高宽比的一块随机区域,然后将该区域缩放为高和宽均为224像素的输入。测试时,我们将图像的高和宽均缩放为256像素,然后从中裁剪出高和宽均为224像素的中心区域作为输入。此外,我们对RGB(红、绿、蓝)三个颜色通道的数值做标准化:每个数值减去该通道所有数值的平均值,再除以该通道所有数值的标准差作为输出。

# 指定RGB三个通道的均值和方差来将图像通道归一化
normalize = gdata.vision.transforms.Normalize(
    [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

train_augs = gdata.vision.transforms.Compose([
    gdata.vision.transforms.RandomResizedCrop(224),
    gdata.vision.transforms.RandomFlipLeftRight(),
    gdata.vision.transforms.ToTensor(),
    normalize])

test_augs = gdata.vision.transforms.Compose([
    gdata.vision.transforms.Resize(256),
    gdata.vision.transforms.CenterCrop(224),
    gdata.vision.transforms.ToTensor(),
    normalize])

定义和初始化模型

我们使用在ImageNet数据集上预训练的ResNet-18作为源模型。这里指定pretrained=True来自动下载并加载预训练的模型参数。在第一次使用时需要联网下载模型参数。

pretrained_net = model_zoo.vision.resnet18_v2(pretrained=True)

预训练的源模型实例含有两个成员变量,即featuresoutput。前者包含模型除输出层以外的所有层,后者为模型的输出层。这样划分主要是为了方便微调除输出层以外所有层的模型参数。下面打印源模型的成员变量output。作为一个全连接层,它将ResNet最终的全局平均池化层输出变换成ImageNet数据集上1000类的输出。

pretrained_net.output

我们新建一个神经网络作为目标模型。它的定义与预训练的源模型一样,但最后的输出个数等于目标数据集的类别数。在下面的代码中,目标模型实例finetune_net的成员变量features中的模型参数被初始化为源模型相应层的模型参数。由于features中的模型参数是在ImageNet数据集上预训练得到的,已经足够好,因此一般只需使用较小的学习率来微调这些参数。而成员变量output中的模型参数采用了随机初始化,一般需要更大的学习率从头训练。假设Trainer实例中的学习率为$\eta$,我们设成员变量output中的模型参数在迭代中使用的学习率为$10\eta$。

finetune_net = model_zoo.vision.resnet18_v2(classes=2)
finetune_net.features = pretrained_net.features
finetune_net.output.initialize(init.Xavier())
# output中的模型参数将在迭代中使用10倍大的学习率
finetune_net.output.collect_params().setattr('lr_mult', 10)

微调模型

我们先定义一个使用微调的训练函数train_fine_tuning以便多次调用。

def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5):
    train_iter = gdata.DataLoader(
        train_imgs.transform_first(train_augs), batch_size, shuffle=True)
    test_iter = gdata.DataLoader(
        test_imgs.transform_first(test_augs), batch_size)
    ctx = d2l.try_all_gpus()
    net.collect_params().reset_ctx(ctx)
    net.hybridize()
    loss = gloss.SoftmaxCrossEntropyLoss()
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': learning_rate, 'wd': 0.001})
    d2l.train(train_iter, test_iter, net, loss, trainer, ctx, num_epochs)

我们将Trainer实例中的学习率设得小一点,如0.01,以便微调预训练得到的模型参数。根据前面的设置,我们将以10倍的学习率从头训练目标模型的输出层参数。

train_fine_tuning(finetune_net, 0.01)

作为对比,我们定义一个相同的模型,但将它的所有模型参数都初始化为随机值。由于整个模型都需要从头训练,我们可以使用较大的学习率。

scratch_net = model_zoo.vision.resnet18_v2(classes=2)
scratch_net.initialize(init=init.Xavier())
train_fine_tuning(scratch_net, 0.1)

可以看到,微调的模型因为参数初始值更好,往往在相同迭代周期下取得更高的精度。

小结

  • 迁移学习将从源数据集学到的知识迁移到目标数据集上。微调是迁移学习的一种常用技术。
  • 目标模型复制了源模型上除了输出层外的所有模型设计及其参数,并基于目标数据集微调这些参数。而目标模型的输出层需要从头训练。
  • 一般来说,微调参数会使用较小的学习率,而从头训练输出层可以使用较大的学习率。

练习

  • 不断增大finetune_net的学习率。精度会有什么变化?
  • 进一步调节对比试验中finetune_netscratch_net的超参数。它们的精度是不是依然有区别?
  • finetune_net.features中的参数固定为源模型的参数而不在训练中迭代,结果会怎样?你可能会用到以下代码。
finetune_net.features.collect_params().setattr('grad_req', 'null')
  • 事实上ImageNet数据集里也有“hotdog”(热狗)这个类。它在输出层对应的权重参数可以用以下代码获取。我们可以怎样使用这个权重参数?
weight = pretrained_net.output.weight
hotdog_w = nd.split(weight.data(), 1000, axis=0)[713]
hotdog_w.shape

参考文献

[1] GluonCV工具包。https://gluon-cv.mxnet.io/