5.2.1 Dynamic Programming

优质
小牛编辑
133浏览
2023-12-01

一、动态规划

1. 简介

动态规划的本质,是对问题状态的定义状态转移方程的定义

dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems.

动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。

以下介绍,大多都是在说递推的求解方法,但如何拆分问题,才是动态规划的核心。

拆分问题,靠的就是状态的定义状态转移方程的定义

2. 状态的定义

首先想说大家千万不要被下面的数学式吓到,这里只涉及到了函数相关的知识。

给定一个数列,长度为N, 求这个数列的最长上升(递增)子数列(LIS)的长度. 以 1 7 2 8 3 4 为例。 这个数列的最长递增子数列是 1 2 3 4,长度为4; 次长的长度为3, 包括 1 7 8; 1 2 3 等.

要解决这个问题,我们首先要定义这个问题和这个问题的子问题。 有人可能会问了,题目都已经在这了,我们还需定义这个问题吗?需要,原因就是这个问题在字面上看,找不出子问题,而没有子问题,这个题目就没办法解决。

给定一个数列,长度为N, 设F_{k}为:以数列中第k项结尾的最长递增子序列的长度. 求F_{1}..F_{N} 中的最大值.

显然,这个新问题与原问题等价。 而对于F_{k}来讲,F_{1} .. F_{k-1}都是F_{k}的子问题:因为以第k项结尾的最长递增子序列(下称LIS),包含着以第1..k-1中某项结尾的LIS。

上述的新问题F_{k}也可以叫做状态,定义中的“F_{k}为数列中第k项结尾的LIS的长度”,就叫做对状态的定义。 之所以把F_{k}做“状态”而不是“问题” ,一是因为避免跟原问题中“问题”混淆,二是因为这个新问题是数学化定义的。

对状态的定义只有一种吗?当然不是

给定一个数列,长度为N, 设$F{i,k}$为: 在前i项中的,长度为k的最长递增子序列中,最后一位的最小值. 1<=k<=N. 若在前i项中,不存在长度为k的最长递增子序列,则$F{i,k}$为正无穷. 求最大的x,使得$F_{N,k}$不为正无穷。

这个新定义与原问题的等价性也不难证明,请读者体会一下。 上述的$F{i,k}$就是状态,定义中的“$F{i,k}$为:在前i项中,长度为k的最长递增子序列中,最后一位的最小值”就是对状态的定义。

3. 状态转移方程

上述状态定义好之后,状态和状态之间的关系式,就叫做状态转移方程。

F_{k}为:以数列中第k项结尾的最长递增子序列的长度.

设A为题中数列,状态转移方程为:

用文字解释一下是:

以第k项结尾的LIS的长度是:保证第i项比第k项小的情况下,以第i项结尾的LIS长度加一的最大值,取遍i的所有值(i小于k)。

第二种定义:

设$F_{i,k}$为:在数列前i项中,长度为k的递增子序列中,最后一位的最小值

设A为题中数列,状态转移方程为:

(边界情况需要分类讨论较多,在此不列出,需要根据状态定义导出边界情况。)

大家套着定义读一下公式就可以了,应该不难理解,就是有点绕。

这里可以看出,这里的状态转移方程,就是定义了问题和子问题之间的关系。

可以看出,状态转移方程就是带有条件的递推式。

二、目录

本部分内容整理一些LeetCode中关于动态规划的常见问题及Java解决方案,供大家学习动态规划。

  • Distinct Subsequences
  • Longest Common Subsequence
  • Longest Increasing Subsequence
  • Best Time to Buy and Sell Stock
  • Maximum Subarray
  • Maximum Product Subarray
  • Longest Palindromic Substring
  • BackPack
  • Maximal Square
  • Stone Game