4.4.6 Floyd算法
一、弗洛伊德算法介绍
和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
基本思想
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]
表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]
的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞
。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]
的距离" > "a[i][0]+a[0][j]
"(a[i][0]+a[0][j]
表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]
为"a[i][0]+a[0][j]
"。 同理,第k次更新时,如果"a[i][j]
的距离" > "a[i][k]+a[k][j]
",则更新a[i][j]
为"a[i][k]+a[k][j]
"。更新N次之后,操作完成!
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
二、弗洛伊德算法图解
以上图G4为例,来对弗洛伊德进行算法演示。
初始状态:S是记录各个顶点间最短路径的矩阵。
第1步:初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞
。实际上,就是将图的原始矩阵复制到S中。
注:a[i][j]
表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j]
,则设置a[i][j]=a[i][0]+a[0][j]
。 以顶点a[1][6]
,上一步操作之后,a[1][6]=∞
;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为16。
同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]
的大小。
三、弗洛伊德算法的代码说明
以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
public class MatrixUDG {
private int mEdgNum; // 边的数量
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值
...
}
MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
2. 弗洛伊德算法
/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
public void floyd(int[][] path, int[][] dist) {
// 初始化
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++) {
dist[i][j] = mMatrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}
// 计算最短路径
for (int k = 0; k < mVexs.length; k++) {
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++) {
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
int tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp) {
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}
// 打印floyd最短路径的结果
System.out.printf("floyd: \n");
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++)
System.out.printf("%2d ", dist[i][j]);
System.out.printf("\n");
}
}