生存分析( Survival Analysis)

优质
小牛编辑
136浏览
2023-12-01

生存分析涉及预测特定事件将要发生的时间。 它也被称为失效时间分析或死亡时间分析。 例如,预测患有癌症的人将存活的天数或预测机械系统将要失败的时间。

名为survival的R包用于进行生存分析。 该软件包包含函数Surv() ,它将输入数据作为R公式,并在所选变量中创建一个生存对象进行分析。 然后我们使用函数survfit()来创建分析图。

安装包

install.packages("survival")

语法 (Syntax)

在R中创建生存分析的基本语法是 -

Surv(time,event)
survfit(formula)

以下是所用参数的说明 -

  • time是事件发生前的跟进时间。

  • event表示预期事件的发生状态。

  • formula是预测变量之间的关系。

例子 (Example)

我们将考虑在上面安装的生存包中出现的名为“pbc”的数据集。 它描述了患有原发性胆汁性肝硬化(PBC)的人的生存数据。 在数据集中的许多列中,我们主要关注“时间”和“状态”字段。 时间表示在接受肝移植或患者死亡的患者之间患者登记与事件之前的天数。

# Load the library.
library("survival")
# Print first few rows.
print(head(pbc))

当我们执行上面的代码时,它会产生以下结果和图表 -

  id time status trt      age sex ascites hepato spiders edema bili chol
1  1  400      2   1 58.76523   f       1      1       1   1.0 14.5  261
2  2 4500      0   1 56.44627   f       0      1       1   0.0  1.1  302
3  3 1012      2   1 70.07255   m       0      0       0   0.5  1.4  176
4  4 1925      2   1 54.74059   f       0      1       1   0.5  1.8  244
5  5 1504      1   2 38.10541   f       0      1       1   0.0  3.4  279
6  6 2503      2   2 66.25873   f       0      1       0   0.0  0.8  248
  albumin copper alk.phos    ast trig platelet protime stage
1    2.60    156   1718.0 137.95  172      190    12.2     4
2    4.14     54   7394.8 113.52   88      221    10.6     3
3    3.48    210    516.0  96.10   55      151    12.0     4
4    2.54     64   6121.8  60.63   92      183    10.3     4
5    3.53    143    671.0 113.15   72      136    10.9     3
6    3.98     50    944.0  93.00   63       NA    11.0     3

根据以上数据,我们正在考虑分析的时间和状态。

应用Surv()和survfit()函数

现在我们继续将Surv()函数应用于上述数据集并创建一个将显示趋势的图。

# Load the library.
library("survival")
# Create the survival object. 
survfit(Surv(pbc$time,pbc$status == 2)~1)
# Give the chart file a name.
png(file = "survival.png")
# Plot the graph. 
plot(survfit(Surv(pbc$time,pbc$status == 2)~1))
# Save the file.
dev.off()

当我们执行上面的代码时,它会产生以下结果和图表 -

Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)
      n  events  median 0.95LCL 0.95UCL 
    418     161    3395    3090    3853 
使用R的生存分析

上图中的趋势有助于我们预测在特定天数结束时的生存概率。