当前位置: 首页 > 编程笔记 >

R语言 vs Python对比:数据分析哪家强?

孙经艺
2023-03-14
本文向大家介绍R语言 vs Python对比:数据分析哪家强?,包括了R语言 vs Python对比:数据分析哪家强?的使用技巧和注意事项,需要的朋友参考一下

什么是R语言?

R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。

R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。R主要是以命令行操作,同时有人开发了几种图形用户界面。

R的功能能够通过由用户撰写的包增强。增加的功能有特殊的统计技术、绘图功能,以及编程接口和数据输出/输入功能。这些软件包是由R语言、LaTeX、Java及最常用C语言和Fortran撰写。下载的可执行文件版本会连同一批核心功能的软件包,而根据CRAN纪录有过千种不同的软件包。其中有几款较为常用,例如用于经济计量、财经分析、人文科学研究以及人工智能。

Python与R语言的共同特点

Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法

Python和R两门语言有多平台适应性,linux、window都可以使用,并且代码可移植性强

Python和R比较贴近MATLAB以及minitab等常用的数学工具

Python与R语言的区别

数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。

Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。

Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。 而R是在统计方面比较突出。

Python的pandas借鉴了R的dataframes,R中的rvest则参考了Python的BeautifulSoup,两种语言在一定程度上存在互补性,通常,我们认为Python比R在计算机编程、网络爬虫上更有优势,而 R 在统计分析上是一种更高效的独立数据分析工具。所以说,同时学会Python和R这两把刷子才是数据科学的王道。

要赶上这趟快车不容易,尤其是对于非专业出身的小白来说,面对一堆代码就已经万脸懵逼了,还怎么可能成为Python大牛?

今天就为您精心推荐几本R语言与python入门及数据分析的书籍,只要开始,就不怕晚!

开始之前,为想学习python的朋友推荐下之前的两期书单,反响不错,需要的朋友可以看一看:

  • Python书单,不将就
  • 你眼中的Python大牛必备书单

一、R语言实战(第二版)

(点击链接,即可下载) 

推荐理由:注重实用性,是一本全面而细致的R指南,高度概括了该软件和它的强大功能,展示了使用的统计示例,且对于难以用传统方法处理的凌乱、不完整和非正态的数据给出了优雅的处理方法。

二、Python编程:从入门到实践

(点击,直接下载)

推荐理由:上到有编程基础的程序员,下到10岁少年,想入门Python并达到可以开发实际项目的水平,本书是读者优选!

三、数据科学实战手册 R+Python

(点击链接,即可下载)

推荐理由:本书涵盖R和Python两种主流语言,其优点在于其结构,每一章的每一节内容都是按照“准备工作—处理流程—工作原理”的方式组织,这种组织形式非常适合一边实践一边学习(learn-by-doing)。

四、Python金融大数据分析

(点击链接,即可下载)

推荐理由:唯一一本详细讲解使用Python分析处理金融大数据的专业图书;金融应用开发领域从业人员必读。

五、Python数据科学指南

推荐理由:本书从讲解如何在数据科学中应用Python开始,陆续介绍了Python的工作环境,如何用Python分析数据,以及数据挖掘的概念,然后又扩展到机器学习。本书还涵盖了缩减原则、集成方法、随机森林、旋转森林和超树等方面的内容,这些都是一个成功的数据科学专家所必需掌握的。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对小牛知识库的支持。

 类似资料:
  • 主要内容:安装包,示例,应用Surv()和survfit()函数生存分析涉及预测特定事件发生的时间。 它也被称为失败时间分析或分析死亡时间。 例如预测癌症患者的生存天数或预测机械系统出现故障的时间。 R中的软件包:用于进行生存分析。该包中含有函数,它将输入数据作为R公式,并在所选变量中创建一个生存对象进行分析。然后使用函数来创建分析图。 安装包 语法 在R中创建生存分析的基本语法是 - 以下是使用的参数的描述 - time - 是直到事件发生的后续时间。 ev

  • 主要内容:ANCOVA分析,比较两个模型我们使用回归分析来创建描述预测变量变量对响应变量的影响的模型。有时,如果我们有类似于是/否或男/女等值的分类变量,简单回归分析为分类变量的每个值提供多个结果。在这种情况下,可以通过使用分类变量和预测变量来研究分类变量的影响,并比较分类变量的每个级别的回归线。 这样的分析被称为协方差分析,也称为ANCOVA。 输入数据 从R提供的数据集创建一个包含字段,和的数据框。 这里我们将作为响应变量,将作为预

  • 主要内容:安装R包,准备输入数据,例子,验证文件下载许多网站为用户提供一些公开的数据。 例如,世界卫生组织(WHO)以CSV,txt和XML文件的形式提供关于健康和医疗信息的报告。 使用R程序,我们可以从这些网站以编程方式提取特定的数据。 用于从网络中废弃数据的R中的一些包是 - RCurl,XML和stringr,用于连接URL,识别文件所需的链接并将其下载到本地环境。 安装R包 需要以下包才能处理URL和链接到文件。 如果它们在R环境中不可用,

  • 主要内容:获取数据帧的结构,数据帧数据摘要,从数据帧提取数据,扩展数据帧数据帧是一个表或二维类似数组的结构,其中每列包含一个变量的值,每行包含来自每一列的一组值。 以下是数据帧的特征 - 列名称应该不为空。 行名称应该是唯一的。 存储在数据帧中的数据可以是数字,因子或字符类型。 每列应包含相同数量的数据项。 创建数据帧 当我们执行上述代码时,会产生以下结果 - 获取数据帧的结构 通过使用函数可以查看数据帧的结构,参考以下代码实现 - 当我们执行上述代码时,会产生以下结

  • 主要内容:语法,示例,不同的时间间隔,多时间系列时间序列是一系列数据点,其每个数据点与时间戳相关联。 一个简单的例子就是股票在某一天不同时间点的股票价格。另一个例子是一年中不同月份某个地区的降雨量。R语言使用许多功能来创建,操纵和绘制时间序列数据。时间序列的数据存储在称为时间序列对象的R对象中。 它也是一个R数据对象,如向量或数据帧。 时间序列对象是通过使用函数创建的。 语法 时间序列分析所使用的函数的基本语法是 - 以下是使用的参数的描述 -

  • 主要内容:在数据框中连接列和行,合并数据帧,拆分数据和重构数据,拆分数据,重构数据R中的数据重整是关于将数据组织成行和列的方式。 R中的大多数时间数据处理是通过将输入数据作为数据帧来完成的。 很容易从数据帧的行和列中提取数据,但是有些情况下,我们需要的格式与收到的格式不同。 R具有许多函数,用于在数据帧中拆分,合并和更改行到列,反之亦然。 在数据框中连接列和行 我们可以使用函数连接多个向量来创建数据帧。也可以使用函数合并两个数据帧。 当我们执行上述代码时,会产生以下结果 - 合