Leetcode 题解 - 树
递归
一棵树要么是空树,要么有两个指针,每个指针指向一棵树。树是一种递归结构,很多树的问题可以使用递归来处理。
1. 树的高度
104. Maximum Depth of Binary Tree (Easy)
// java public int maxDepth(TreeNode root) { if (root == null) return 0; return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1; }
2. 平衡树
110. Balanced Binary Tree (Easy)
// html 3 / \ 9 20 / \ 15 7
平衡树左右子树高度差都小于等于 1
// java private boolean result = true; public boolean isBalanced(TreeNode root) { maxDepth(root); return result; } public int maxDepth(TreeNode root) { if (root == null) return 0; int l = maxDepth(root.left); int r = maxDepth(root.right); if (Math.abs(l - r) > 1) result = false; return 1 + Math.max(l, r); }
3. 两节点的最长路径
543. Diameter of Binary Tree (Easy)
// html Input: 1 / \ 2 3 / \ 4 5 Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
// java private int max = 0; public int diameterOfBinaryTree(TreeNode root) { depth(root); return max; } private int depth(TreeNode root) { if (root == null) return 0; int leftDepth = depth(root.left); int rightDepth = depth(root.right); max = Math.max(max, leftDepth + rightDepth); return Math.max(leftDepth, rightDepth) + 1; }
4. 翻转树
226. Invert Binary Tree (Easy)
// java public TreeNode invertTree(TreeNode root) { if (root == null) return null; TreeNode left = root.left; // 后面的操作会改变 left 指针,因此先保存下来 root.left = invertTree(root.right); root.right = invertTree(left); return root; }
5. 归并两棵树
617. Merge Two Binary Trees (Easy)
// html Input: Tree 1 Tree 2 1 2 / \ / \ 3 2 1 3 / \ \ 5 4 7 Output: 3 / \ 4 5 / \ \ 5 4 7
// java public TreeNode mergeTrees(TreeNode t1, TreeNode t2) { if (t1 == null && t2 == null) return null; if (t1 == null) return t2; if (t2 == null) return t1; TreeNode root = new TreeNode(t1.val + t2.val); root.left = mergeTrees(t1.left, t2.left); root.right = mergeTrees(t1.right, t2.right); return root; }
6. 判断路径和是否等于一个数
Leetcdoe : 112. Path Sum (Easy)
// html Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1 return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
路径和定义为从 root 到 leaf 的所有节点的和。
// java public boolean hasPathSum(TreeNode root, int sum) { if (root == null) return false; if (root.left == null && root.right == null && root.val == sum) return true; return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val); }
7. 统计路径和等于一个数的路径数量
437. Path Sum III (Easy)
// html root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
路径不一定以 root 开头,也不一定以 leaf 结尾,但是必须连续。
// java public int pathSum(TreeNode root, int sum) { if (root == null) return 0; int ret = pathSumStartWithRoot(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum); return ret; } private int pathSumStartWithRoot(TreeNode root, int sum) { if (root == null) return 0; int ret = 0; if (root.val == sum) ret++; ret += pathSumStartWithRoot(root.left, sum - root.val) + pathSumStartWithRoot(root.right, sum - root.val); return ret; }
8. 子树
572. Subtree of Another Tree (Easy)
// html Given tree s: 3 / \ 4 5 / \ 1 2 Given tree t: 4 / \ 1 2 Return true, because t has the same structure and node values with a subtree of s. Given tree s: 3 / \ 4 5 / \ 1 2 / 0 Given tree t: 4 / \ 1 2 Return false.
// java public boolean isSubtree(TreeNode s, TreeNode t) { if (s == null) return false; return isSubtreeWithRoot(s, t) || isSubtree(s.left, t) || isSubtree(s.right, t); } private boolean isSubtreeWithRoot(TreeNode s, TreeNode t) { if (t == null && s == null) return true; if (t == null || s == null) return false; if (t.val != s.val) return false; return isSubtreeWithRoot(s.left, t.left) && isSubtreeWithRoot(s.right, t.right); }
9. 树的对称
101. Symmetric Tree (Easy)
// html 1 / \ 2 2 / \ / \ 3 4 4 3
// java public boolean isSymmetric(TreeNode root) { if (root == null) return true; return isSymmetric(root.left, root.right); } private boolean isSymmetric(TreeNode t1, TreeNode t2) { if (t1 == null && t2 == null) return true; if (t1 == null || t2 == null) return false; if (t1.val != t2.val) return false; return isSymmetric(t1.left, t2.right) && isSymmetric(t1.right, t2.left); }
10. 最小路径
111. Minimum Depth of Binary Tree (Easy)
树的根节点到叶子节点的最小路径长度
// java public int minDepth(TreeNode root) { if (root == null) return 0; int left = minDepth(root.left); int right = minDepth(root.right); if (left == 0 || right == 0) return left + right + 1; return Math.min(left, right) + 1; }
11. 统计左叶子节点的和
404. Sum of Left Leaves (Easy)
// html 3 / \ 9 20 / \ 15 7 There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.
// java public int sumOfLeftLeaves(TreeNode root) { if (root == null) return 0; if (isLeaf(root.left)) return root.left.val + sumOfLeftLeaves(root.right); return sumOfLeftLeaves(root.left) + sumOfLeftLeaves(root.right); } private boolean isLeaf(TreeNode node){ if (node == null) return false; return node.left == null && node.right == null; }
12. 相同节点值的最大路径长度
687. Longest Univalue Path (Easy)
// html 1 / \ 4 5 / \ \ 4 4 5 Output : 2
// java private int path = 0; public int longestUnivaluePath(TreeNode root) { dfs(root); return path; } private int dfs(TreeNode root){ if (root == null) return 0; int left = dfs(root.left); int right = dfs(root.right); int leftPath = root.left != null && root.left.val == root.val ? left + 1 : 0; int rightPath = root.right != null && root.right.val == root.val ? right + 1 : 0; path = Math.max(path, leftPath + rightPath); return Math.max(leftPath, rightPath); }
13. 间隔遍历
337. House Robber III (Medium)
// html 3 / \ 2 3 \ \ 3 1 Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
// java public int rob(TreeNode root) { if (root == null) return 0; int val1 = root.val; if (root.left != null) val1 += rob(root.left.left) + rob(root.left.right); if (root.right != null) val1 += rob(root.right.left) + rob(root.right.right); int val2 = rob(root.left) + rob(root.right); return Math.max(val1, val2); }
14. 找出二叉树中第二小的节点
671. Second Minimum Node In a Binary Tree (Easy)
// html Input: 2 / \ 2 5 / \ 5 7 Output: 5
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
// java public int findSecondMinimumValue(TreeNode root) { if (root == null) return -1; if (root.left == null && root.right == null) return -1; int leftVal = root.left.val; int rightVal = root.right.val; if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left); if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right); if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal); if (leftVal != -1) return leftVal; return rightVal; }
层次遍历
使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。
1. 一棵树每层节点的平均数
637. Average of Levels in Binary Tree (Easy)
// java public List averageOfLevels(TreeNode root) { List ret = new ArrayList<>(); if (root == null) return ret; Queue queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { int cnt = queue.size(); double sum = 0; for (int i = 0; i < cnt; i++) { TreeNode node = queue.poll(); sum += node.val; if (node.left != null) queue.add(node.left); if (node.right != null) queue.add(node.right); } ret.add(sum / cnt); } return ret; }
2. 得到左下角的节点
513. Find Bottom Left Tree Value (Easy)
// html Input: 1 / \ 2 3 / / \ 4 5 6 / 7 Output: 7
// java public int findBottomLeftValue(TreeNode root) { Queue queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { root = queue.poll(); if (root.right != null) queue.add(root.right); if (root.left != null) queue.add(root.left); } return root.val; }
前中后序遍历
// html 1 / \ 2 3 / \ \ 4 5 6
- 层次遍历顺序:[1 2 3 4 5 6]
- 前序遍历顺序:[1 2 4 5 3 6]
- 中序遍历顺序:[4 2 5 1 3 6]
- 后序遍历顺序:[4 5 2 6 3 1]
层次遍历使用 BFS 实现,利用的就是 BFS 一层一层遍历的特性;而前序、中序、后序遍历利用了 DFS 实现。
前序、中序、后序遍只是在对节点访问的顺序有一点不同,其它都相同。
① 前序
// java void dfs(TreeNode root) { visit(root); dfs(root.left); dfs(root.right); }
② 中序
// java void dfs(TreeNode root) { dfs(root.left); visit(root); dfs(root.right); }
③ 后序
// java void dfs(TreeNode root) { dfs(root.left); dfs(root.right); visit(root); }
1. 非递归实现二叉树的前序遍历
144. Binary Tree Preorder Traversal (Medium)
// java public List preorderTraversal(TreeNode root) { List ret = new ArrayList<>(); Stack stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { TreeNode node = stack.pop(); if (node == null) continue; ret.add(node.val); stack.push(node.right); // 先右后左,保证左子树先遍历 stack.push(node.left); } return ret; }
2. 非递归实现二叉树的后序遍历
145. Binary Tree Postorder Traversal (Medium)
前序遍历为 root -> left -> right,后序遍历为 left -> right -> root。可以修改前序遍历成为 root -> right -> left,那么这个顺序就和后序遍历正好相反。
// java public List postorderTraversal(TreeNode root) { List ret = new ArrayList<>(); Stack stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { TreeNode node = stack.pop(); if (node == null) continue; ret.add(node.val); stack.push(node.left); stack.push(node.right); } Collections.reverse(ret); return ret; }
3. 非递归实现二叉树的中序遍历
94. Binary Tree Inorder Traversal (Medium)
// java public List inorderTraversal(TreeNode root) { List ret = new ArrayList<>(); if (root == null) return ret; Stack stack = new Stack<>(); TreeNode cur = root; while (cur != null || !stack.isEmpty()) { while (cur != null) { stack.push(cur); cur = cur.left; } TreeNode node = stack.pop(); ret.add(node.val); cur = node.right; } return ret; }
BST
二叉查找树(BST):根节点大于等于左子树所有节点,小于等于右子树所有节点。
二叉查找树中序遍历有序。
1. 修剪二叉查找树
669. Trim a Binary Search Tree (Easy)
// html Input: 3 / \ 0 4 \ 2 / 1 L = 1 R = 3 Output: 3 / 2 / 1
题目描述:只保留值在 L ~ R 之间的节点
// java public TreeNode trimBST(TreeNode root, int L, int R) { if (root == null) return null; if (root.val > R) return trimBST(root.left, L, R); if (root.val < L) return trimBST(root.right, L, R); root.left = trimBST(root.left, L, R); root.right = trimBST(root.right, L, R); return root; }
2. 寻找二叉查找树的第 k 个元素
230. Kth Smallest Element in a BST (Medium)
中序遍历解法:
// java private int cnt = 0; private int val; public int kthSmallest(TreeNode root, int k) { inOrder(root, k); return val; } private void inOrder(TreeNode node, int k) { if (node == null) return; inOrder(node.left, k); cnt++; if (cnt == k) { val = node.val; return; } inOrder(node.right, k); }
递归解法:
// java public int kthSmallest(TreeNode root, int k) { int leftCnt = count(root.left); if (leftCnt == k - 1) return root.val; if (leftCnt > k - 1) return kthSmallest(root.left, k); return kthSmallest(root.right, k - leftCnt - 1); } private int count(TreeNode node) { if (node == null) return 0; return 1 + count(node.left) + count(node.right); }
3. 把二叉查找树每个节点的值都加上比它大的节点的值
Convert BST to Greater Tree (Easy)
// html Input: The root of a Binary Search Tree like this: 5 / \ 2 13 Output: The root of a Greater Tree like this: 18 / \ 20 13
先遍历右子树。
// java private int sum = 0; public TreeNode convertBST(TreeNode root) { traver(root); return root; } private void traver(TreeNode node) { if (node == null) return; traver(node.right); sum += node.val; node.val = sum; traver(node.left); }
4. 二叉查找树的最近公共祖先
235. Lowest Common Ancestor of a Binary Search Tree (Easy)
// html _______6______ / \ ___2__ ___8__ / \ / \ 0 4 7 9 / \ 3 5 For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
// java public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); return root; }
5. 二叉树的最近公共祖先
236. Lowest Common Ancestor of a Binary Tree (Medium)
// html _______3______ / \ ___5__ ___1__ / \ / \ 6 2 0 8 / \ 7 4 For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
// java public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root == null || root == p || root == q) return root; TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); return left == null ? right : right == null ? left : root; }
6. 从有序数组中构造二叉查找树
108. Convert Sorted Array to Binary Search Tree (Easy)
// java public TreeNode sortedArrayToBST(int[] nums) { return toBST(nums, 0, nums.length - 1); } private TreeNode toBST(int[] nums, int sIdx, int eIdx){ if (sIdx > eIdx) return null; int mIdx = (sIdx + eIdx) / 2; TreeNode root = new TreeNode(nums[mIdx]); root.left = toBST(nums, sIdx, mIdx - 1); root.right = toBST(nums, mIdx + 1, eIdx); return root; }
7. 根据有序链表构造平衡的二叉查找树
109. Convert Sorted List to Binary Search Tree (Medium)
// html Given the sorted linked list: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
// java public TreeNode sortedListToBST(ListNode head) { if (head == null) return null; if (head.next == null) return new TreeNode(head.val); ListNode preMid = preMid(head); ListNode mid = preMid.next; preMid.next = null; // 断开链表 TreeNode t = new TreeNode(mid.val); t.left = sortedListToBST(head); t.right = sortedListToBST(mid.next); return t; } private ListNode preMid(ListNode head) { ListNode slow = head, fast = head.next; ListNode pre = head; while (fast != null && fast.next != null) { pre = slow; slow = slow.next; fast = fast.next.next; } return pre; }
8. 在二叉查找树中寻找两个节点,使它们的和为一个给定值
653. Two Sum IV - Input is a BST (Easy)
// html Input: 5 / \ 3 6 / \ \ 2 4 7 Target = 9 Output: True
使用中序遍历得到有序数组之后,再利用双指针对数组进行查找。
应该注意到,这一题不能用分别在左右子树两部分来处理这种思想,因为两个待求的节点可能分别在左右子树中。
// java public boolean findTarget(TreeNode root, int k) { List nums = new ArrayList<>(); inOrder(root, nums); int i = 0, j = nums.size() - 1; while (i < j) { int sum = nums.get(i) + nums.get(j); if (sum == k) return true; if (sum < k) i++; else j--; } return false; } private void inOrder(TreeNode root, List nums) { if (root == null) return; inOrder(root.left, nums); nums.add(root.val); inOrder(root.right, nums); }
9. 在二叉查找树中查找两个节点之差的最小绝对值
530. Minimum Absolute Difference in BST (Easy)
// html Input: 1 \ 3 / 2 Output: 1
利用二叉查找树的中序遍历为有序的性质,计算中序遍历中临近的两个节点之差的绝对值,取最小值。
// java private int minDiff = Integer.MAX_VALUE; private TreeNode preNode = null; public int getMinimumDifference(TreeNode root) { inOrder(root); return minDiff; } private void inOrder(TreeNode node) { if (node == null) return; inOrder(node.left); if (preNode != null) minDiff = Math.min(minDiff, node.val - preNode.val); preNode = node; inOrder(node.right); }
10. 寻找二叉查找树中出现次数最多的值
501. Find Mode in Binary Search Tree (Easy)
// html 1 \ 2 / 2 return [2].
答案可能不止一个,也就是有多个值出现的次数一样多。
// java private int curCnt = 1; private int maxCnt = 1; private TreeNode preNode = null; public int[] findMode(TreeNode root) { List maxCntNums = new ArrayList<>(); inOrder(root, maxCntNums); int[] ret = new int[maxCntNums.size()]; int idx = 0; for (int num : maxCntNums) { ret[idx++] = num; } return ret; } private void inOrder(TreeNode node, List nums) { if (node == null) return; inOrder(node.left, nums); if (preNode != null) { if (preNode.val == node.val) curCnt++; else curCnt = 1; } if (curCnt > maxCnt) { maxCnt = curCnt; nums.clear(); nums.add(node.val); } else if (curCnt == maxCnt) { nums.add(node.val); } preNode = node; inOrder(node.right, nums); }
Trie
Trie,又称前缀树或字典树,用于判断字符串是否存在或者是否具有某种字符串前缀。
1. 实现一个 Trie
208. Implement Trie (Prefix Tree) (Medium)
// java class Trie { private class Node { Node[] childs = new Node[26]; boolean isLeaf; } private Node root = new Node(); public Trie() { } public void insert(String word) { insert(word, root); } private void insert(String word, Node node) { if (node == null) return; if (word.length() == 0) { node.isLeaf = true; return; } int index = indexForChar(word.charAt(0)); if (node.childs[index] == null) { node.childs[index] = new Node(); } insert(word.substring(1), node.childs[index]); } public boolean search(String word) { return search(word, root); } private boolean search(String word, Node node) { if (node == null) return false; if (word.length() == 0) return node.isLeaf; int index = indexForChar(word.charAt(0)); return search(word.substring(1), node.childs[index]); } public boolean startsWith(String prefix) { return startWith(prefix, root); } private boolean startWith(String prefix, Node node) { if (node == null) return false; if (prefix.length() == 0) return true; int index = indexForChar(prefix.charAt(0)); return startWith(prefix.substring(1), node.childs[index]); } private int indexForChar(char c) { return c - 'a'; } }
2. 实现一个 Trie,用来求前缀和
677. Map Sum Pairs (Medium)
// html Input: insert("apple", 3), Output: Null Input: sum("ap"), Output: 3 Input: insert("app", 2), Output: Null Input: sum("ap"), Output: 5
// java class MapSum { private class Node { Node[] child = new Node[26]; int value; } private Node root = new Node(); public MapSum() { } public void insert(String key, int val) { insert(key, root, val); } private void insert(String key, Node node, int val) { if (node == null) return; if (key.length() == 0) { node.value = val; return; } int index = indexForChar(key.charAt(0)); if (node.child[index] == null) { node.child[index] = new Node(); } insert(key.substring(1), node.child[index], val); } public int sum(String prefix) { return sum(prefix, root); } private int sum(String prefix, Node node) { if (node == null) return 0; if (prefix.length() != 0) { int index = indexForChar(prefix.charAt(0)); return sum(prefix.substring(1), node.child[index]); } int sum = node.value; for (Node child : node.child) { sum += sum(prefix, child); } return sum; } private int indexForChar(char c) { return c - 'a'; } }