当前位置: 首页 > 文档资料 > NumPy 中文教程 >

数学函数(Mathematical Functions)

优质
小牛编辑
130浏览
2023-12-01

可以理解的是,NumPy包含大量的各种数学运算。 NumPy提供标准的三角函数,算术运算函数,复数等处理。

三角函数 (Trigonometric Functions)

NumPy具有标准的三角函数,它以弧度为单位返回给定角度的三角比。

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 
print 'Sine of different angles:' 
# Convert to radians by multiplying with pi/180 
print np.sin(a*np.pi/180) 
print '\n'  
print 'Cosine values for angles in array:' 
print np.cos(a*np.pi/180) 
print '\n'  
print 'Tangent values for given angles:' 
print np.tan(a*np.pi/180) 

这是它的输出 -

Sine of different angles:
[ 0.          0.5         0.70710678  0.8660254   1.        ]
Cosine values for angles in array:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01
   6.12323400e-17]                                                            
Tangent values for given angles:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00
   1.63312394e+16]

arcsin, arcos,arctan函数返回给定角度的sin,cos和tan的三角逆。 通过将弧度转换为度数, numpy.degrees() function可以验证这些函数的结果。

Example

import numpy as np 
a = np.array([0,30,45,60,90]) 
print 'Array containing sine values:' 
sin = np.sin(a*np.pi/180) 
print sin 
print '\n'  
print 'Compute sine inverse of angles. Returned values are in radians.' 
inv = np.arcsin(sin) 
print inv 
print '\n'  
print 'Check result by converting to degrees:' 
print np.degrees(inv) 
print '\n'  
print 'arccos and arctan functions behave similarly:' 
cos = np.cos(a*np.pi/180) 
print cos 
print '\n'  
print 'Inverse of cos:' 
inv = np.arccos(cos) 
print inv 
print '\n'  
print 'In degrees:' 
print np.degrees(inv) 
print '\n'  
print 'Tan function:' 
tan = np.tan(a*np.pi/180) 
print tan
print '\n'  
print 'Inverse of tan:' 
inv = np.arctan(tan) 
print inv 
print '\n'  
print 'In degrees:' 
print np.degrees(inv) 

其输出如下 -

Array containing sine values:
[ 0.          0.5         0.70710678  0.8660254   1.        ]
Compute sine inverse of angles. Returned values are in radians.
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 
Check result by converting to degrees:
[  0.  30.  45.  60.  90.]
arccos and arctan functions behave similarly:
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01          
   6.12323400e-17] 
Inverse of cos:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633] 
In degrees:
[  0.  30.  45.  60.  90.] 
Tan function:
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00          
   1.63312394e+16]
Inverse of tan:
[ 0.          0.52359878  0.78539816  1.04719755  1.57079633]
In degrees:
[  0.  30.  45.  60.  90.]

舍入功能

numpy.around()

这是一个函数,它返回舍入到所需精度的值。 该函数采用以下参数。

numpy.around(a,decimals)

Where,

Sr.No.参数和描述
1

a

输入数据

2

decimals

要舍入的小数位数。 默认值为0.如果为负,则将整数舍入到小数点左侧的位置

Example

import numpy as np 
a = np.array([1.0,5.55, 123, 0.567, 25.532]) 
print 'Original array:' 
print a 
print '\n'  
print 'After rounding:' 
print np.around(a) 
print np.around(a, decimals = 1) 
print np.around(a, decimals = -1)

它产生以下输出 -

Original array:                                                               
[   1.       5.55   123.       0.567   25.532] 
After rounding:                                                               
[   1.    6.   123.    1.   26. ]                                               
[   1.    5.6  123.    0.6  25.5]                                          
[   0.    10.  120.    0.   30. ]

numpy.floor()

此函数返回不大于输入参数的最大整数。 scalar x的最大值是最大的integer i ,因此i 《= x 。 请注意,在Python中,地板总是从0开始舍入。

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 
print 'The given array:' 
print a 
print '\n'  
print 'The modified array:' 
print np.floor(a)

它产生以下输出 -

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]
The modified array:                                                           
[ -2.   1.  -1.   0.  10.]

numpy.ceil()

ceil()函数返回输入值的上限,即scalar x的ceil是最小的integer i ,使得i 》= x.

Example

import numpy as np 
a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) 
print 'The given array:' 
print a 
print '\n'  
print 'The modified array:' 
print np.ceil(a)

它将产生以下输出 -

The given array:                                                              
[ -1.7   1.5  -0.2   0.6  10. ]
The modified array:                                                           
[ -1.   2.  -0.   1.  10.]