Section-3 RegionalDP 第3节 区域动规 - MinimumMergeCost - 最小合并代价

优质
小牛编辑
128浏览
2023-12-01

问题

对长度为 n 的序列 s 进行合并,每次将相邻的两个元素 a 和 b 合并为一个新的元素 c ,并且 c = a+b ,合并产生的代价也为 a+b 。经过 n-1 次合并后,序列 s 被合并为 1 个数字,这个过程的代价是之前所有合并的代价总和。求出将序列 s 合并为一个数字的最小合并代价。合并过程如图:

MinimumMergeCost1.svg

本问题的原型为“石子合并”。

解法

设 sum(i,j) 为序列中区域 s[i,j] 的所有元素之和,设 f(i,j) 为合并区域 s[i,j] 产生的最小代价,其中 i,j in [1,n]且i leq j 。因此有如下状态转移方程:


f(i,j) =
begin{cases}
0 & (初始化)i,j in [0,n],i = j
+infty & (初始化)i,j in [0,n],i neq j
min {⁡f(i,k)+f(k+1,j)+sum(i,k)+sum(k+1,j) } & i,j,k in [1,n],i leq k leq j
end{cases}

(1) s[i,i] 不需要合并,因此 f(i,i) = 0 ;

(2) s[i,j] 需要合并,我们的最终目标是获取合并最小代价,因此设未知的 f(i,j) = +infty ;

(3) 假设将 s[i,k] 和 s[k+1,j] 这两个区域的元素合并。合并 s[i,k] 和 s[k+1,j] 的过程中,已知 s[i,k] 范围的总和为 sum(i,k) ,消耗的代价为 f(i,k) , s[k+1,j] 范围的总和为 sum(k+1,j) ,消耗的代价为 f(k+1,j) 。因为 k in [i,j] ,因此 f(i,j) =min { f(i,k)+f(k+1,j)+sum(i,k)+sum(k+1,j) } ,选择该范围中所有结果的最小值即可;

f(0,n) 即为序列 s 的最小合并代价。该算法的时间复杂度是 O(n^2) 。


石子合并