当前位置: 首页 > 知识库问答 >
问题:

最小边Dijkstra算法

郤令
2023-03-14

首先定义Dijkstra算法:
Dijkstra的算法在有向图中寻找具有非负边权的单源最短路径。
如果我有源和目的地T,我可以用Dijkstra算法在这两个顶点之间找到一条最短路径,但这里的问题是我想找到这两个顶点之间的最短路径,这两个顶点之间的边数不超过形式k。
第一部分是Dijkstra算法,第二部分是BFS算法,因为我们可以用BFS算法在无权图中找到最短路径。
所以我想知道有没有一种方法,可以改变dijkstra以解决这个问题?
任何解决方案将是感激的。

共有1个答案

毋宏茂
2023-03-14

您可以使用Bellman-Ford的算法,而不是在外循环中运行直到v-1为止,而是运行直到k为止。外循环迭代器指示从源到每个目标的最短路径的最大长度。

来自维基百科(带有外圈索引修改)

   for i from 1 to k: //here up to k instead to |V|
       for each edge (u, v) with weight w in edges:
           if distance[u] + w < distance[v]:
               distance[v] := distance[u] + w
               predecessor[v] := u
 类似资料:
  • 我的问题是:每个节点的优先级是什么?我认为它是最小值的传入边缘的权重,但我不确定。这是真的吗? 第二个问题,当我提取队列的根时,如果这个节点不与任何一个被访问的节点邻接,它将如何工作?

  • 我在CLRS,第三版(第662页)中读到了Dijkstra的算法。下面是我不明白的书中的一部分: 如果图足够稀疏--特别是-我们可以通过用二进制最小堆实现最小优先级队列来改进算法。 为什么图形应该是稀疏的? 下面是另一部分:

  • 我已经从Cormen的第三版参考“算法介绍”中找到的伪代码中实现了Dijkstra算法,用于单源最短路径问题。 我的实现是在python上使用链接列表在邻接列表表示中表示图形。这意味着节点列表是一个链接列表,每个节点都有一个链接列表来表示每个节点的边缘。此外,我没有实现或使用任何二进制堆或斐波那契堆作为算法所需的最小优先级队列,因此当过程需要提取与源距离最小的下一个节点时,我在节点链表内搜索O(V

  • 本文向大家介绍java实现Dijkstra最短路径算法,包括了java实现Dijkstra最短路径算法的使用技巧和注意事项,需要的朋友参考一下 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 Dijkstra一般的表述

  • 最短路径问题的Dijkstra算法 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。 这个算法的python实现途径很多,网上能够发现不少。这里推荐一个我在网上看到的,本来打算自己写,看了这个,决定自己不写了,因为他的已经太好了。 解决(Python) #

  • Dijkstra算法的这种特殊实现的时间复杂度是多少? 我知道这个问题的几个答案是,当你使用最小堆时,O(E log V),这篇文章和这篇文章也是如此。然而,这里的文章说的是O(V ElogE),它的逻辑与下面的代码类似(但不完全相同)。 算法的不同实现可以改变时间复杂度,我试图分析下面实现的复杂性,但是像检查和忽略中的重复顶点这样的优化让我怀疑自己。 以下是伪代码: 笔记: 从源顶点可到达的每个