当前位置: 首页 > 编程笔记 >

python Dijkstra算法实现最短路径问题的方法

宦翔飞
2023-03-14
本文向大家介绍python Dijkstra算法实现最短路径问题的方法,包括了python Dijkstra算法实现最短路径问题的方法的使用技巧和注意事项,需要的朋友参考一下

本文借鉴于张广河教授主编的《数据结构》,对其中的代码进行了完善。

从某源点到其余各顶点的最短路径

Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径。假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶点的最短路径的基本思想如下:

  • 使用集合S记录已求得最短路径的终点,初始时S={v}。
  • 选择一条长度最小的最短路径,该路径的终点w属于V-S,将w并入S,并将该最短路径的长度记为Dw。
  • 对于V-S中任一顶点是s,将源点到顶点s的最短路径长度记为Ds,并将顶点w到顶点s的弧的权值记为Dws,若Dw+Dws<Ds,
  • 则将源点到顶点s的最短路径长度修改为Dw+Ds=ws。
  • 重复执行2和3,知道S=V。
  • 为了实现算法,
  • 使用邻接矩阵Arcs存储有向网,当i=j时,Arcs[i][j]=0;当i!=j时,若下标为i的顶点到下标为j的顶点有弧且弧的权值为w,则Arcs[i][j]=w,否则Arcs[i][j]=float(‘inf')即无穷大。
  • 使用Dist存储源点到每一个终点的最短路径长度。
  • 使用列表Path存储每一条最短路径中倒数第二个顶点的下标。
  • 使用flag记录每一个顶点是否已经求得最短路径,在思想中即是判断顶点是属于V集合,还是属于V-S集合。

代码实现

#构造有向图Graph
class Graph:
  def __init__(self,graph,labels): #labels为标点名称
    self.Arcs=graph
    self.VertexNum=graph.shape[0]
    self.labels=labels
def Dijkstra(self,Vertex,EndNode): #Vertex为源点,EndNode为终点
  Dist=[[] for i in range(self.VertexNum)] #存储源点到每一个终点的最短路径的长度
  Path=[[] for i in range(self.VertexNum)] #存储每一条最短路径中倒数第二个顶点的下标
  flag=[[] for i in range(self.VertexNum)] #记录每一个顶点是否求得最短路径
  index=0
  #初始化
  while index<self.VertexNum:
    Dist[index]=self.Arcs[Vertex][index]
    flag[index]=0
    if self.Arcs[Vertex][index]<float('inf'): #正无穷
      Path[index]=Vertex
    else:
      Path[index]=-1 #表示从顶点Vertex到index无路径
    index+=1
  flag[Vertex]=1
  Path[Vertex]=0
  Dist[Vertex]=0
  index=1
  while index<self.VertexNum:
    MinDist=float('inf')
    j=0
    while j<self.VertexNum:
      if flag[j]==0 and Dist[j]<MinDist:
        tVertex=j #tVertex为目前从V-S集合中找出的距离源点Vertex最断路径的顶点
        MinDist=Dist[j]
      j+=1
    flag[tVertex]=1
    EndVertex=0
    MinDist=float('inf') #表示无穷大,若两点间的距离小于MinDist说明两点间有路径
    #更新Dist列表,符合思想中第三条
    while EndVertex<self.VertexNum:
      if flag[EndVertex]==0:
        if self.Arcs[tVertex][EndVertex]<MinDist and Dist[
          tVertex]+self.Arcs[tVertex][EndVertex]<Dist[EndVertex]:
          Dist[EndVertex]=Dist[tVertex]+self.Arcs[tVertex][EndVertex]
          Path[EndVertex]=tVertex
      EndVertex+=1
    index+=1
  vertex_endnode_path=[] #存储从源点到终点的最短路径
  return Dist[EndNode],start_end_Path(Path,Vertex,EndNode,vertex_endnode_path)
#根据本文上述定义的Path递归求路径
def start_end_Path(Path,start,endnode,path):
  if start==endnode:
    path.append(start)
  else:
    path.append(endnode)
    start_end_Path(Path,start,Path[endnode],path)
  return path

if __name__=='__main__':
  #float('inf')表示无穷
  graph=np.array([[0,6,5,float('inf'),float('inf'),float('inf')],
          [float('inf'),0,2,8,float('inf'),float('inf')],
          [float('inf'),float('inf'),0,float('inf'),3,float('inf')],
          [float('inf'),float('inf'),7,0,float('inf'),9],
          [float('inf'),float('inf'),float('inf'),float('inf'),0,9],
          [float('inf'),float('inf'),float('inf'),float('inf'),0]])
  G=Graph(graph,labels=['a','b','c','d','e','f'])
  start=input('请输入源点')
  endnode=input('请输入终点')
  dist,path=Dijkstra(G,G.labels.index(start),G.labels.index(endnode))
  Path=[]
  for i in range(len(path)):
    Path.append(G.labels[path[len(path)-1-i]])
  print('从顶点{}到顶点{}的最短路径为:\n{}\n最短路径长度为:{}'.format(start,endnode,Path,dist))

输出结果如下:

请输入源点
a
请输入终点
f
从顶点a到顶点f的最短路径为:
['a', 'c', 'e', 'f']
最短路径长度为:17

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python实现Dijkstra算法的最短路径问题,包括了python实现Dijkstra算法的最短路径问题的使用技巧和注意事项,需要的朋友参考一下 迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法。 1 算法原理 迪杰斯特拉(Dijkstra)算法是一个按照路径长度递增的次序产生的最短路径算法。下图为带权值的有向图,作为程序中

  • 最短路径问题的Dijkstra算法 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。 这个算法的python实现途径很多,网上能够发现不少。这里推荐一个我在网上看到的,本来打算自己写,看了这个,决定自己不写了,因为他的已经太好了。 解决(Python) #

  • 本文向大家介绍java实现Dijkstra最短路径算法,包括了java实现Dijkstra最短路径算法的使用技巧和注意事项,需要的朋友参考一下 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 Dijkstra一般的表述

  • 本文向大家介绍java实现dijkstra最短路径寻路算法,包括了java实现dijkstra最短路径寻路算法的使用技巧和注意事项,需要的朋友参考一下 【引用】迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。  它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。 基本思想 通过Dijkstra计算图G中的最短路径时,需要指

  • 本文向大家介绍java实现最短路径算法之Dijkstra算法,包括了java实现最短路径算法之Dijkstra算法的使用技巧和注意事项,需要的朋友参考一下 前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法。该算法被称为是“贪心算法”的成功典范。本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码。 一、知识准备: 1、表示图的数据结构 用于存储图的

  • 主要内容:最短路径算法在给定的图存储结构中,从某一顶点到另一个顶点所经过的多条边称为 路径。 图 1 图存储结构 例如在图 1 所示的图结构中,从顶点 A 到 B 的路径有多条,包括 A-B、A-C-B 和 A-D-B。当我们给图中的每条边赋予相应的权值后,就可以从众多路径中找出总权值最小的一条,这条路径就称为 最短路径。 图 2 无向带权图 以图 2 为例,从顶点 A 到 B 的路径有 3 条,它们各自的总权值是: