当前位置: 首页 > 知识库问答 >
问题:

Dijkstra算法。作为最小优先级队列的最小堆

姚兴安
2023-03-14

我在CLRS,第三版(第662页)中读到了Dijkstra的算法。下面是我不明白的书中的一部分:

如果图足够稀疏--特别是E=o(V^2/LG V)-我们可以通过用二进制最小堆实现最小优先级队列来改进算法。

为什么图形应该是稀疏的?

下面是另一部分:

private static class Node implements Comparable<Node> {

    final int key;
    int distance = Integer.MAX_VALUE;
    Node prev = null;

    public Node(int key) {
        this.key = key;
    }

    @Override
    public int compareTo(Node o) {
        if (distance < o.distance) {
            return -1;
        } else if (distance > o.distance) {
            return 1;
        } else {
            return 0;
        }
    }

    @Override
    public String toString() {
        return "key=" + key + " distance=" + distance;
    }

    @Override
    public int hashCode() {
        return key;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) {
            return true;
        }
        if (!(obj instanceof Node)) {
            return false;
        }
        Node other = (Node) obj;
        return key == other.key;
    }
}
public static class MinPriorityQueue {

    private Node[] array;
    private int heapSize;

    public MinPriorityQueue(Node[] array) {
        this.array = array;
        this.heapSize = this.array.length;
    }

    public Node extractMin() {
        Node temp = array[0];
        swap(0, heapSize - 1, array);
        heapSize--;
        sink(0);
        return temp;
    }

    public boolean isEmpty() {
        return heapSize == 0;
    }

    public void buildMinHeap() {
        for (int i = heapSize / 2 - 1; i >= 0; i--) {
            sink(i);
        }
    }

    public void decreaseKey(int index, Node key) {
        if (key.compareTo(array[index]) >= 0) {
            throw new IllegalArgumentException("the new key must be greater than the current key");
        }
        array[index] = key;
        while (index > 0 && array[index].compareTo(array[parentIndex(index)]) < 0) {
            swap(index, parentIndex(index), array);
            index = parentIndex(index);
        }
    }

    private int parentIndex(int index) {
        return (index - 1) / 2;
    }

    private int left(int index) {
        return 2 * index + 1;
    }

    private int right(int index) {
        return 2 * index + 2;
    }

    private void sink(int index) {
        int smallestIndex = index;
        int left = left(index);
        int right = right(index);
        if (left < heapSize && array[left].compareTo(array[smallestIndex]) < 0) {
            smallestIndex = left;
        }
        if (right < heapSize && array[right].compareTo(array[smallestIndex]) < 0) {
            smallestIndex = right;
        }
        if (index != smallestIndex) {
            swap(smallestIndex, index, array);
            sink(smallestIndex);
        }
    }

    public Node min() {
        return array[0];
    }

    private void swap(int i, int j, Node[] array) {
        Node temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

}

共有1个答案

姬振濂
2023-03-14

为什么图形应该是稀疏的?

Dijkstra算法的运行时间取决于底层数据结构和图形形状(边和顶点)的组合。

例如,使用链表需要O(vä)时间,即它只取决于顶点的数量。使用堆需要O((V+E)logv),也就是说,它取决于顶点的数量和边的数量。

 类似资料:
  • 我的问题是:每个节点的优先级是什么?我认为它是最小值的传入边缘的权重,但我不确定。这是真的吗? 第二个问题,当我提取队列的根时,如果这个节点不与任何一个被访问的节点邻接,它将如何工作?

  • 我一直在努力实现Dijkstra的算法;更具体地,具有优先级队列的部分。将顶点添加到数据结构中,并使用迭代器遍历所有顶点并找到最小距离;这很容易,但这次是。 我想要的是: < li >能够将顶点插入数据结构中 < li >提取(返回并移除)距离dist[v]最小的顶点v 我相信为了让Dijkstra的算法正常工作,你应该能够在恒定时间内插入顶点并在log(n)时间内提取它们;有人建议可以使用优先级

  • 我正在为Dikjstra算法做一个优先级队列。我目前在插入方法上有麻烦。我包含了整个类的代码,以防你需要更好地了解我想完成的事情。我将堆索引放在一个数组列表(heapIndex)中,堆放在另一个数组列表中。 那是我运行程序后的输出(值,优先级,堆索引)。*(-1)表示heapIndex中的空单元格。

  • 这是我写的Dijkstra算法的代码: 在这方面我不能理解的工作 这涉及到: < code>()运算符在这里有什么用?我是说它在这段代码中是如何运作的? 还有为什么我们使用

  • 在我实现Dijkstra算法的过程中,我有1个数组(包含所有节点)和1个优先级队列(包含所有节点)。每当一个节点排队时,我都会用新的距离和它来自哪里来更新所有相邻的节点,这样我就可以回溯路径。 优先级队列中的节点更新为新距离,数组中的节点更新为它来自的位置和新距离。当节点出列时,数组中的最终距离会更新: 用前一个节点的信息更新数组和用距离更新优先级队列是否可以接受? 只要找到更好的距离,就会发生这

  • 我目前正在尝试实现min heap PQ,但是我在实现的正确性方面遇到了一些问题,我似乎无法找出我做错了什么——它没有输出最低优先级,也没有对它们进行正确排序。 使用以下测试数据: 我得到以下结果: 我希望结果是按升序排列的——起初我认为这可能是因为交换了错误的孩子,但最后一个输出是最大的优先级,所以这没有意义。我花了几个小时试图研究堆优先级队列,但我找不到任何帮助。 以下是CMP要求的更好的代码