当前位置: 首页 > 面试题库 >

逐像素贝塞尔曲线

姜兴业
2023-03-14
问题内容

我通过Google找到的二次/三次贝塞尔曲线代码主要是通过将线细分为一系列点并将它们与直线连接来工作的。光栅化发生在直线算法中,而不是贝塞尔曲线中。像布雷森汉姆(Bresenham)这样的算法可以逐像素地对一条线进行栅格化,并且可以对其进行优化(请参阅Po-
Han Lin的解决方案
)。

什么是像线算法一样逐像素工作而不是通过绘制一系列点的二次贝塞尔曲线算法?


问题答案:

Bresenham算法的一种变体适用于圆,椭圆和抛物线等二次函数,因此也应适用于二次Bezier曲线。

我打算尝试一种实现,但是随后我在网上找到了一个实现:http
:
//members.chello.at/~easyfilter/bresenham.html。

如果您需要更多细节或其他示例,上述页面上有指向100页PDF的链接,其中详细介绍了该方法:http
:
//members.chello.at/~easyfilter/Bresenham.pdf。

这是来自Alois Zingl网站的代码,用于绘制任何二次Bezier曲线。第一个例程将曲线在水平和垂直梯度变化处细分:

void plotQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2)
{ /* plot any quadratic Bezier curve */
  int x = x0-x1, y = y0-y1;
  double t = x0-2*x1+x2, r;
  if ((long)x*(x2-x1) > 0) { /* horizontal cut at P4? */
    if ((long)y*(y2-y1) > 0) /* vertical cut at P6 too? */
      if (fabs((y0-2*y1+y2)/t*x) > abs(y)) { /* which first? */
        x0 = x2; x2 = x+x1; y0 = y2; y2 = y+y1; /* swap points */
      } /* now horizontal cut at P4 comes first */
    t = (x0-x1)/t;
    r = (1-t)*((1-t)*y0+2.0*t*y1)+t*t*y2; /* By(t=P4) */
    t = (x0*x2-x1*x1)*t/(x0-x1); /* gradient dP4/dx=0 */
    x = floor(t+0.5); y = floor(r+0.5);
    r = (y1-y0)*(t-x0)/(x1-x0)+y0; /* intersect P3 | P0 P1 */
    plotQuadBezierSeg(x0,y0, x,floor(r+0.5), x,y);
    r = (y1-y2)*(t-x2)/(x1-x2)+y2; /* intersect P4 | P1 P2 */
    x0 = x1 = x; y0 = y; y1 = floor(r+0.5); /* P0 = P4, P1 = P8 */
  }
  if ((long)(y0-y1)*(y2-y1) > 0) { /* vertical cut at P6? */
    t = y0-2*y1+y2; t = (y0-y1)/t;
    r = (1-t)*((1-t)*x0+2.0*t*x1)+t*t*x2; /* Bx(t=P6) */
    t = (y0*y2-y1*y1)*t/(y0-y1); /* gradient dP6/dy=0 */
    x = floor(r+0.5); y = floor(t+0.5);
    r = (x1-x0)*(t-y0)/(y1-y0)+x0; /* intersect P6 | P0 P1 */
    plotQuadBezierSeg(x0,y0, floor(r+0.5),y, x,y);
    r = (x1-x2)*(t-y2)/(y1-y2)+x2; /* intersect P7 | P1 P2 */
    x0 = x; x1 = floor(r+0.5); y0 = y1 = y; /* P0 = P6, P1 = P7 */
  }
  plotQuadBezierSeg(x0,y0, x1,y1, x2,y2); /* remaining part */
}

第二个例程实际上绘制了一个Bezier曲线段(一个没有梯度变化的段):

void plotQuadBezierSeg(int x0, int y0, int x1, int y1, int x2, int y2)
{ /* plot a limited quadratic Bezier segment */
  int sx = x2-x1, sy = y2-y1;
  long xx = x0-x1, yy = y0-y1, xy; /* relative values for checks */
  double dx, dy, err, cur = xx*sy-yy*sx; /* curvature */
  assert(xx*sx <= 0 && yy*sy <= 0); /* sign of gradient must not change */
  if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */
    x2 = x0; x0 = sx+x1; y2 = y0; y0 = sy+y1; cur = -cur; /* swap P0 P2 */
  }
  if (cur != 0) { /* no straight line */
    xx += sx; xx *= sx = x0 < x2 ? 1 : -1; /* x step direction */
    yy += sy; yy *= sy = y0 < y2 ? 1 : -1; /* y step direction */
    xy = 2*xx*yy; xx *= xx; yy *= yy; /* differences 2nd degree */
    if (cur*sx*sy < 0) { /* negated curvature? */
      xx = -xx; yy = -yy; xy = -xy; cur = -cur;
    }
    dx = 4.0*sy*cur*(x1-x0)+xx-xy; /* differences 1st degree */
    dy = 4.0*sx*cur*(y0-y1)+yy-xy;
    xx += xx; yy += yy; err = dx+dy+xy; /* error 1st step */
    do {
      setPixel(x0,y0); /* plot curve */
      if (x0 == x2 && y0 == y2) return; /* last pixel -> curve finished */
      y1 = 2*err < dx; /* save value for test of y step */
      if (2*err > dy) { x0 += sx; dx -= xy; err += dy += yy; } /* x step */
      if ( y1 ) { y0 += sy; dy -= xy; err += dx += xx; } /* y step */
    } while (dy < 0 && dx > 0); /* gradient negates -> algorithm fails */
  }
  plotLine(x0,y0, x2,y2); /* plot remaining part to end */
}

该站点上还提供了抗锯齿代码。

来自Zingl站点的三次贝塞尔曲线的相应函数为

void plotCubicBezier(int x0, int y0, int x1, int y1,
  int x2, int y2, int x3, int y3)
{ /* plot any cubic Bezier curve */
  int n = 0, i = 0;
  long xc = x0+x1-x2-x3, xa = xc-4*(x1-x2);
  long xb = x0-x1-x2+x3, xd = xb+4*(x1+x2);
  long yc = y0+y1-y2-y3, ya = yc-4*(y1-y2);
  long yb = y0-y1-y2+y3, yd = yb+4*(y1+y2);
  float fx0 = x0, fx1, fx2, fx3, fy0 = y0, fy1, fy2, fy3;
  double t1 = xb*xb-xa*xc, t2, t[5];
  /* sub-divide curve at gradient sign changes */
  if (xa == 0) { /* horizontal */
    if (abs(xc) < 2*abs(xb)) t[n++] = xc/(2.0*xb); /* one change */
  } else if (t1 > 0.0) { /* two changes */
    t2 = sqrt(t1);
    t1 = (xb-t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
    t1 = (xb+t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
  }
  t1 = yb*yb-ya*yc;
  if (ya == 0) { /* vertical */
    if (abs(yc) < 2*abs(yb)) t[n++] = yc/(2.0*yb); /* one change */
  } else if (t1 > 0.0) { /* two changes */
    t2 = sqrt(t1);
    t1 = (yb-t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
    t1 = (yb+t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
  }
  for (i = 1; i < n; i++) /* bubble sort of 4 points */
    if ((t1 = t[i-1]) > t[i]) { t[i-1] = t[i]; t[i] = t1; i = 0; }
    t1 = -1.0; t[n] = 1.0; /* begin / end point */
    for (i = 0; i <= n; i++) { /* plot each segment separately */
    t2 = t[i]; /* sub-divide at t[i-1], t[i] */
    fx1 = (t1*(t1*xb-2*xc)-t2*(t1*(t1*xa-2*xb)+xc)+xd)/8-fx0;
    fy1 = (t1*(t1*yb-2*yc)-t2*(t1*(t1*ya-2*yb)+yc)+yd)/8-fy0;
    fx2 = (t2*(t2*xb-2*xc)-t1*(t2*(t2*xa-2*xb)+xc)+xd)/8-fx0;
    fy2 = (t2*(t2*yb-2*yc)-t1*(t2*(t2*ya-2*yb)+yc)+yd)/8-fy0;
    fx0 -= fx3 = (t2*(t2*(3*xb-t2*xa)-3*xc)+xd)/8;
    fy0 -= fy3 = (t2*(t2*(3*yb-t2*ya)-3*yc)+yd)/8;
    x3 = floor(fx3+0.5); y3 = floor(fy3+0.5); /* scale bounds to int */
    if (fx0 != 0.0) { fx1 *= fx0 = (x0-x3)/fx0; fx2 *= fx0; }
    if (fy0 != 0.0) { fy1 *= fy0 = (y0-y3)/fy0; fy2 *= fy0; }
    if (x0 != x3 || y0 != y3) /* segment t1 - t2 */
      plotCubicBezierSeg(x0,y0, x0+fx1,y0+fy1, x0+fx2,y0+fy2, x3,y3);
    x0 = x3; y0 = y3; fx0 = fx3; fy0 = fy3; t1 = t2;
  }
}

void plotCubicBezierSeg(int x0, int y0, float x1, float y1,
  float x2, float y2, int x3, int y3)
{ /* plot limited cubic Bezier segment */
  int f, fx, fy, leg = 1;
  int sx = x0 < x3 ? 1 : -1, sy = y0 < y3 ? 1 : -1; /* step direction */
  float xc = -fabs(x0+x1-x2-x3), xa = xc-4*sx*(x1-x2), xb = sx*(x0-x1-x2+x3);
  float yc = -fabs(y0+y1-y2-y3), ya = yc-4*sy*(y1-y2), yb = sy*(y0-y1-y2+y3);
  double ab, ac, bc, cb, xx, xy, yy, dx, dy, ex, *pxy, EP = 0.01;

  /* check for curve restrains */
  /* slope P0-P1 == P2-P3 and (P0-P3 == P1-P2 or no slope change) */
  assert((x1-x0)*(x2-x3) < EP && ((x3-x0)*(x1-x2) < EP || xb*xb < xa*xc+EP));
  assert((y1-y0)*(y2-y3) < EP && ((y3-y0)*(y1-y2) < EP || yb*yb < ya*yc+EP));
  if (xa == 0 && ya == 0) { /* quadratic Bezier */
    sx = floor((3*x1-x0+1)/2); sy = floor((3*y1-y0+1)/2); /* new midpoint */
    return plotQuadBezierSeg(x0,y0, sx,sy, x3,y3);
  }
  x1 = (x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)+1; /* line lengths */
  x2 = (x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)+1;
  do { /* loop over both ends */
    ab = xa*yb-xb*ya; ac = xa*yc-xc*ya; bc = xb*yc-xc*yb;
    ex = ab*(ab+ac-3*bc)+ac*ac; /* P0 part of self-intersection loop? */
    f = ex > 0 ? 1 : sqrt(1+1024/x1); /* calculate resolution */
    ab *= f; ac *= f; bc *= f; ex *= f*f; /* increase resolution */
    xy = 9*(ab+ac+bc)/8; cb = 8*(xa-ya);/* init differences of 1st degree */
    dx = 27*(8*ab*(yb*yb-ya*yc)+ex*(ya+2*yb+yc))/64-ya*ya*(xy-ya);
    dy = 27*(8*ab*(xb*xb-xa*xc)-ex*(xa+2*xb+xc))/64-xa*xa*(xy+xa);
    /* init differences of 2nd degree */
    xx = 3*(3*ab*(3*yb*yb-ya*ya-2*ya*yc)-ya*(3*ac*(ya+yb)+ya*cb))/4;
    yy = 3*(3*ab*(3*xb*xb-xa*xa-2*xa*xc)-xa*(3*ac*(xa+xb)+xa*cb))/4;
    xy = xa*ya*(6*ab+6*ac-3*bc+cb); ac = ya*ya; cb = xa*xa;
    xy = 3*(xy+9*f*(cb*yb*yc-xb*xc*ac)-18*xb*yb*ab)/8;
    if (ex < 0) { /* negate values if inside self-intersection loop */
      dx = -dx; dy = -dy; xx = -xx; yy = -yy; xy = -xy; ac = -ac; cb = -cb;
    } /* init differences of 3rd degree */
    ab = 6*ya*ac; ac = -6*xa*ac; bc = 6*ya*cb; cb = -6*xa*cb;
    dx += xy; ex = dx+dy; dy += xy; /* error of 1st step */
    for (pxy = &xy, fx = fy = f; x0 != x3 && y0 != y3; ) {
      setPixel(x0,y0); /* plot curve */
      do { /* move sub-steps of one pixel */
        if (dx > *pxy || dy < *pxy) goto exit; /* confusing values */
        y1 = 2*ex-dy; /* save value for test of y step */
        if (2*ex >= dx) { /* x sub-step */
          fx--; ex += dx += xx; dy += xy += ac; yy += bc; xx += ab;
        }
        if (y1 <= 0) { /* y sub-step */
          fy--; ex += dy += yy; dx += xy += bc; xx += ac; yy += cb;
        }
      } while (fx > 0 && fy > 0); /* pixel complete? */
      if (2*fx <= f) { x0 += sx; fx += f; } /* x step */
      if (2*fy <= f) { y0 += sy; fy += f; } /* y step */
      if (pxy == &xy && dx < 0 && dy > 0) pxy = &EP;/* pixel ahead valid */
    }
    exit: xx = x0; x0 = x3; x3 = xx; sx = -sx; xb = -xb; /* swap legs */
    yy = y0; y0 = y3; y3 = yy; sy = -sy; yb = -yb; x1 = x2;
  } while (leg--); /* try other end */
  plotLine(x0,y0, x3,y3); /* remaining part in case of cusp or crunode */
}

正如Mike’Pomax’Kamermans所指出的那样,该站​​点上三次Bezier曲线的解决方案并不完整。特别是三次贝塞尔曲线的抗锯齿问题,对有理三次贝塞尔曲线的讨论还不完整。



 类似资料:
  • 贝塞尔曲线用于计算机图形绘制形状,CSS 动画和许多其他地方。 它们其实非常简单,值得学习一次并且在矢量图形和高级动画的世界里非常受用。 控制点 贝塞尔曲线由控制点定义。 这些点可能有 2、3、4 或更多。 例如,两点曲线: 三点曲线: 四点曲线: 如果仔细观察这些曲线,你会立即注意到: 控制点不总是在曲线上这是非常正常的,稍后我们将看到曲线是如何构建的。 曲线的阶次等于控制点的数量减一。 对于两

  • 基础示例 <vuep template="#example"></vuep> <script v-pre type="text/x-template" id="example"> <template> <div class="amap-page-container"> <el-amap vid="amapDemo" :zoom="zoom" :center="center" c

  • bezierCurveTo()方法 绘制三次贝塞尔曲线代码如下。 context.bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y); 这个方法可谓是绘制波浪线的神器。根据之前的结论,n阶贝塞尔曲线就有n-1个控制点,所以三次贝塞尔曲线有1个起始点、1个终止点、2个控制点。因此传入的6个参数分别为控制点cp1 (cp1x, cp1y),控制点cp2 (cp2x, cp2

  • 贝塞尔曲线 Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线。 曲线定义:起始点、终止点、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。 这里我们不介绍计算公式,只要知道贝塞尔曲线是一条由起始

  • 贝塞尔曲线于1959年,由法国物理学家与数学家Paul de Casteljau所发明,于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,并用于汽车的车身设计。贝赛尔曲线为计算机矢量图形学奠定了基础,它的主要意义在于无论是直线或曲线都能在数学上予以描述。 贝塞尔曲线分为两种:二次贝塞尔曲线和三次贝塞尔曲线。 quadraticCurveTo()方法绘制二次贝塞尔曲线

  • 如果二次曲线不能满足你的需要,贝塞尔曲线可能会满足你。贝塞尔曲线又称三次曲线,是HTML5画布API所能支持的最高级的曲线。 图1-7 绘制贝塞尔曲线 绘制步骤 按照以下步骤绘制任意贝塞尔曲线: 1. 定义2D画布并设置曲线样式: window.onload  = function(){ var canvas  = document.getElementById("myCanvas");

  • 这样的一个运动轨迹如何写,假设起点(295,0),终点(600,1000),运动时间2s, bang写一个动画帧keyframes, keyframes格式如下: https://cdn.alongweb.top/aa.mp4

  • 创建一条平滑的三维 二次贝塞尔曲线, 由起点、终点和一个控制点所定义。 代码示例 const curve = new THREE.QuadraticBezierCurve3( new THREE.Vector3( -10, 0, 0 ), new THREE.Vector3( 20, 15, 0 ), new THREE.Vector3( 10, 0, 0 ) ); const poi