卷积神经网络实践
优质
小牛编辑
130浏览
2023-12-01
本节介绍如何构造一个简单的CNN模型进行手写数字识别,
但在现实场景中,往往使用imagenet预训练的深度CNN模型进行迁移学习,能极大地提升预测准确率,
可参考我在百度大数据竞赛中开源的模型: keras-dog
数据处理
- dataset处理成四维的,label仍然作为one-hot encoding
def reformat(dataset, labels, image_size, num_labels, num_channels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32)
return dataset, labels
- 将lesson2的dnn转为cnn很简单,只要把WX+b改为conv2d(X)+b即可
- 关键在于conv2d
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
给定四维的input
和filter
tensor,计算一个二维卷积
Args:
input
: ATensor
. type必须是以下几种类型之一:half
,float32
,float64
.filter
: ATensor
. type和input
必须相同strides
: A list ofints
.一维,长度4, 在input
上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶padding
: Astring
from:"SAME", "VALID"
. padding 算法的类型use_cudnn_on_gpu
: An optionalbool
. Defaults toTrue
.data_format
: An optionalstring
from:"NHWC", "NCHW"
, 默认为"NHWC"
。 指定输入输出数据格式,默认格式为"NHWC", 数据按这样的顺序存储:[batch, in_height, in_width, in_channels]
也可以用这种方式:"NCHW", 数据按这样的顺序存储:[batch, in_channels, in_height, in_width]
name
: 操作名,可选.
Returns:
A Tensor
. type与input
相同
Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
conv2d实际上执行了以下操作:
- 将filter转为二维矩阵,shape为
[filter_height * filter_width * in_channels, output_channels]
. - 从input tensor中提取image patches,每个patch是一个virtual tensor,shape
[batch, out_height, out_width, filter_height * filter_width * in_channels]
. - 将每个filter矩阵和image patch向量相乘
具体来讲,当data_format为NHWC时:
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
input 中的每个patch都作用于filter,每个patch都能获得其他patch对filter的训练 需要满足strides[0] = strides[3] = 1
. 大多数水平步长和垂直步长相同的情况下:strides = [1, stride, stride, 1]
.
- 然后再接一个WX+b连Relu连WX+b的全连接神经网络即可
Max Pooling
在tf.nn.conv2d后面接tf.nn.max_pool,将卷积层输出减小,从而减少要调整的参数
tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
Performs the max pooling on the input.
Args:
value
: A 4-DTensor
with shape[batch, height, width, channels]
and typetf.float32
.ksize
: A list of ints that has length >= 4. 要执行取最值的切片在各个维度上的尺寸strides
: A list of ints that has length >= 4. 取切片的步长padding
: A string, either'VALID'
or'SAME'
. padding算法data_format
: A string. 'NHWC' and 'NCHW' are supported.name
: 操作名,可选
Returns:
A Tensor
with type tf.float32
. The max pooled output tensor.
优化
仿照lesson2,添加learning rate decay 和 drop out,可以将准确率提高到90.6%
补充
- 最近在用GPU版本的TensorFlow,发现,如果import tensorflow放在代码第一行,运行会报段错误(pycharm debug模式下不会),因此最好在import tensorflow前import numpy或者其他的module