最后,我开始学习神经网络,我想知道卷积深度信念网络和卷积网络之间的区别。在这里,有一个类似的问题,但没有确切的答案。我们知道卷积深度信念网络是CNN DBN。所以,我要做一个物体识别。我想知道哪一个比另一个好得多或者它们的复杂性。我搜索了一下,但找不到任何东西,可能是做错了什么。
我不知道你是否还需要一个答案,但无论如何,我希望你会觉得这很有用。
CDBN增加了DBN的复杂性,但如果你已经有了一些背景,那就没那么多了。
如果你反而担心计算复杂性,这真的取决于你如何使用DBN部分。DBN的作用通常是初始化网络的权重以加快收敛速度。在这种情况下,DBN仅在预训练期间出现。
您也可以像判别网络一样使用整个DBN(保持生成能力)但它提供的权重初始化对于判别任务来说已经足够了。因此,在假设的实时利用率期间,两个系统在性能方面是相等的。
此外,无论如何,第一个模型提供的权重初始化确实有助于像对象识别这样的困难任务(即使是一个好的卷积神经网络单独也达不到很好的成功率,至少与人类相比),所以它通常是一个不错的选择。
我是神经网络领域的新手,我想知道深度信念网络和卷积网络之间的区别。还有,有没有深度信念和卷积神经网络相结合的深度卷积网络? 这就是我目前所收集到的。如果我错了请纠正我。 对于图像分类问题,深度信念网络有许多层,每个层都使用贪婪的分层策略进行训练。例如,如果我的图像大小是50x50,我想要一个有4层的深度网络,即 输入层 隐藏层1(HL1) 隐藏层2(HL2) 输出层 如果使用卷积神经网络解决了同样
在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意。一方面,神经网络计算复杂。虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及。因此,训练一个多通道、多层和有大量参数的卷积神经网络在当年很难完成。另一方面,当年研究者还没有大量深入研究参
注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验。 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 想了解更多信息请参考CIFAR-10 page,以及Alex Kriz
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络
下午好在第一阶段,在卷积神经网络(输入层)的输入上,我们接收一个源图像(因此是手写英文字母的图像)。首先,我们使用一个从左到右的nxn窗口来扫描图像并在内核(卷积矩阵)上乘法来构建特征映射?但没有人写过内核应该具有什么样的精确值(换句话说,我应该将从n*n窗口检索到的数据相乘到什么样的内核值)。是否适合在这个用于边缘检测的卷积核上乘以数据?有许多卷积核(浮雕、高斯滤波器、边缘检测、角度检测等)?但
在了解了机器学习概念之后,现在可以将注意力转移到深度学习概念上。深度学习是机器学习的一个分支。深度学习实现的示例包括图像识别和语音识别等应用。 以下是两种重要的深度神经网络 - 卷积神经网络 递归神经网络 在本章中,我们将重点介绍CNN - 卷积神经网络。 卷积神经网络 卷积神经网络旨在通过多层阵列处理数据。这种类型的神经网络用于图像识别或面部识别等应用。CNN与其他普通神经网络之间的主要区别在于