无向图最小生成树的Prim算法

优质
小牛编辑
146浏览
2023-12-01

无向图最小生成树的Prim算法

思路说明

假设点A,B,C,D,E,F,两点之间有连线的,以及它们的距离分别是:(A-B:7);(A-D:5);(B-C:8);(B-D:9);(B-E:7);(C-E:5);(D-E:15);(D-F:6);(E-F:8);(E-G:9);(F-G:11)

关于Prim算法的计算过程,参与维基百科的词条:普里姆算法

将上述点与点关系以及两点之间距离(边长,有的文献中称之为权重)写成矩阵形式(在list中,每两个点及其之间的距离组成一个tuple)

edges = [ (“A”, “B”, 7),
(“A”, “D”, 5),
(“B”, “C”, 8),
(“B”, “D”, 9),
(“B”, “E”, 7),
(“C”, “E”, 5),
(“D”, “E”, 15),
(“D”, “F”, 6),
(“E”, “F”, 8),
(“E”, “G”, 9),
(“F”, “G”, 11)
]

在下面的解决方法中,要计算出与已经选出的若干个点有相邻关系的点中,相应边长最短的点。这本质上是排序之后取出最小的,因为这种排序是动态的,如果用sorted或者list.sort()之类的方法对list排序,一则速度慢(python中的sort方法对大数据时不是很快),二则代码也长了。幸好python提供了一个非常好用的模块:heapq。这个模块是堆排序方法实现排序,并能够随时取出最小值。简化代码,更重要是提升了速度。

就用这个来解决Prim算法问题了。

解决(Python)

  1. #! /usr/bin/env python
  2. #coding:utf-8
  3. from collections import defaultdict
  4. from heapq import *
  5. def prim( vertexs, edges ):
  6. adjacent_vertex = defaultdict(list)
  7. """
  8. 注意:defaultdict(list)必须以list做为变量,可以详细阅读:[collections.defaultdict](https://docs.python.org/2/library/collections.html#collections.defaultdict)
  9. """
  10. for v1,v2,length in edges:
  11. adjacent_vertex[v1].append((length, v1, v2))
  12. adjacent_vertex[v2].append((length, v2, v1))
  13. """
  14. 经过上述操作,将edges列表中各项归类成以某点为dictionary的key,其value则是其相邻的点以及边长。如下:
  15. defaultdict(<type 'list'>, {'A': [(7, 'A', 'B'), (5, 'A', 'D')],
  16. 'C': [(8, 'C', 'B'), (5, 'C', 'E')],
  17. 'B': [(7, 'B', 'A'), (8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E')],
  18. 'E': [(7, 'E', 'B'), (5, 'E', 'C'), (15, 'E', 'D'), (8, 'E', 'F'), (9, 'E', 'G')],
  19. 'D': [(5, 'D', 'A'), (9, 'D', 'B'), (15, 'D', 'E'), (6, 'D', 'F')],
  20. 'G': [(9, 'G', 'E'), (11, 'G', 'F')],
  21. 'F': [(6, 'F', 'D'), (8, 'F', 'E'), (11, 'F', 'G')]})
  22. """
  23. mst = [] #存储最小生成树结果
  24. chosed = set(vertexs[0])
  25. """
  26. vertexs是顶点列表,vertexs = list("ABCDEFG")===>vertexs=['A', 'B', 'C', 'D', 'E', 'F', 'G']
  27. >> chosed=set(vertexs[0])
  28. >> chosed
  29. set(['A'])
  30. 也就是,首先选一个点(这个点是可以任意选的),以这个点为起点,找其相邻点,以及最短边长。
  31. """
  32. #得到adjacent_vertexs_edges中顶点是'A'(nodes[0]='A')的相邻点list,即adjacent_vertexs['A']=[(7,'A','B'),(5,'A','D')]
  33. adjacent_vertexs_edges = adjacent_vertex[vertexs[0]]
  34. #将usable_edges加入到堆中,并能够实现用heappop从其中动态取出最小值。关于heapq模块功能,参考python官方文档
  35. heapify(adjacent_vertexs_edges)
  36. while adjacent_vertexs_edges:
  37. #得到某个定点(做为adjacent_vertexs_edges的键)与相邻点距离(相邻点和边长/距离做为该键的值)最小值,并同时从堆中清除。
  38. w, v1, v2 = heappop(adjacent_vertexs_edges)
  39. if v2 not in chosed:
  40. #在used中有第一选定的点'A',上面得到了距离A点最近的点'D',举例是5。将'd'追加到used中
  41. chosed.add(v2)
  42. mst.append((v1,v2,w)) #将v1,v2,w,第一次循环就是('A','D',5) append into mst
  43. #再找与d相邻的点,如果没有在heap中,则应用heappush压入堆内,以加入排序行列
  44. for next_vertex in adjacent_vertex[v2]:
  45. if next_vertex[2] not in chosed:
  46. heappush( adjacent_vertexs_edges,next_vertex)
  47. return mst
  48. #test
  49. vertexs = list("ABCDEFG")
  50. edges = [ ("A", "B", 7), ("A", "D", 5),
  51. ("B", "C", 8), ("B", "D", 9),
  52. ("B", "E", 7), ("C", "E", 5),
  53. ("D", "E", 15), ("D", "F", 6),
  54. ("E", "F", 8), ("E", "G", 9),
  55. ("F", "G", 11)]
  56. print "edges:",edges
  57. print "prim:", prim( vertexs, edges )

运行结果

edges: [(‘A’, ‘B’, 7), (‘A’, ‘D’, 5), (‘B’, ‘C’, 8), (‘B’, ‘D’, 9), (‘B’, ‘E’, 7), (‘C’, ‘E’, 5), (‘D’, ‘E’, 15), (‘D’, ‘F’, 6), (‘E’, ‘F’, 8), (‘E’, ‘G’, 9), (‘F’, ‘G’, 11)]

prim: [(‘A’, ‘D’, 5), (‘D’, ‘F’, 6), (‘A’, ‘B’, 7), (‘B’, ‘E’, 7), (‘E’, ‘C’, 5), (‘E’, ‘G’, 9)]