线性回归
优质
小牛编辑
123浏览
2023-12-01
1、代价函数
- $$J(\theta ) = \frac{1}{{2{\text{m}}}}\sum\limits_{i = 1}^m {{{({h_\theta }({x^{(i)}}) - {y^{(i)}})}^2}} $$
- 其中: $${h_\theta }(x) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}{x_2} + ...$$
- 下面就是要求出theta,使代价最小,即代表我们拟合出来的方程距离真实值最近
- 共有m条数据,其中 $${{{({h_\theta }({x^{(i)}}) - {y^{(i)}})}^2}}$$ 代表我们要拟合出来的方程到真实值距离的平方,平方的原因是因为可能有负值,正负可能会抵消
- 前面有系数
2
的原因是下面求梯度是对每个变量求偏导,2
可以消去
实现代码:
# 计算代价函数
def computerCost(X,y,theta):
m = len(y)
J = 0
J = (np.transpose(X*theta-y))*(X*theta-y)/(2*m) #计算代价J
return J
- 注意这里的X是真实数据前加了一列1,因为有theta(0)
2、梯度下降算法
- 代价函数对 $${{\theta _j}}$$ 求偏导得到:$$\frac{{\partial J(\theta )}}{{\partial {\theta j}}} = \frac{1}{m}\sum\limits{i = 1}^m {[({h_\theta }({x^{(i)}}) - {y^{(i)}})x_j^{(i)}]} $$
- 所以对theta的更新可以写为:$${\theta j} = {\theta j} - \alpha \frac{1}{m}\sum\limits{i = 1}^m {[({h\theta }({x^{(i)}}) - {y^{(i)}})x_j^{(i)}]} $$
- 其中 $$\alpha $$ 为学习速率,控制梯度下降的速度,一般取 0.01,0.03,0.1,0.3.....
- 为什么梯度下降可以逐步减小代价函数
- 假设函数
f(x)
- 泰勒展开:
f(x+△x)=f(x)+f'(x)*△x+o(△x)
- 令:
△x=-α*f'(x)
,即负梯度方向乘以一个很小的步长α
- 将
△x
代入泰勒展开式中:f(x+△x)=f(x)-α*[f'(x)]²+o(△x)
- 可以看出,
α
是取得很小的正数,[f'(x)]²
也是正数,所以可以得出:f(x+△x)<=f(x)
- 所以沿着负梯度放下,函数在减小,多维情况一样。
实现代码
# 梯度下降算法
def gradientDescent(X,y,theta,alpha,num_iters):
m = len(y)
n = len(theta)
temp = np.matrix(np.zeros((n,num_iters))) # 暂存每次迭代计算的theta,转化为矩阵形式
J_history = np.zeros((num_iters,1)) #记录每次迭代计算的代价值
for i in range(num_iters): # 遍历迭代次数
h = np.dot(X,theta) # 计算内积,matrix可以直接乘
temp[:,i] = theta - ((alpha/m)*(np.dot(np.transpose(X),h-y))) #梯度的计算
theta = temp[:,i]
J_history[i] = computerCost(X,y,theta) #调用计算代价函数
print '.',
return theta,J_history
3、均值归一化
目的是使数据都缩放到一个范围内,便于使用梯度下降算法 $${x_i} = \frac{{{x_i} - {\mu _i}}}{{{s_i}}}$$,其中 $${{\mu _i}}$$ 为所有此 feture 数据的平均值,$${{s_i}}$$ 可以是最大值-最小值,也可以是这个 feature 对应的数据的标准差。
实现代码:
# 归一化feature
def featureNormaliza(X):
X_norm = np.array(X) #将X转化为numpy数组对象,才可以进行矩阵的运算
#定义所需变量
mu = np.zeros((1,X.shape[1]))
sigma = np.zeros((1,X.shape[1]))
mu = np.mean(X_norm,0) # 求每一列的平均值(0指定为列,1代表行)
sigma = np.std(X_norm,0) # 求每一列的标准差
for i in range(X.shape[1]): # 遍历列
X_norm[:,i] = (X_norm[:,i]-mu[i])/sigma[i] # 归一化
return X_norm,mu,sigma
注意预测的时候也需要均值归一化数据
4、最终运行结果
代价随迭代次数的变化
5、使用 scikit-learn 库中的线性模型实现
导入包
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler #引入缩放的包
归一化
# 归一化操作
scaler = StandardScaler()
scaler.fit(X)
x_train = scaler.transform(X)
x_test = scaler.transform(np.array([1650,3]))
线性模型拟合
# 线性模型拟合
model = linear_model.LinearRegression()
model.fit(x_train, y)
预测
#预测结果
result = model.predict(x_test)