使用一阶线性方程预测波士顿房价
载入的数据是随sklearn一起发布的,来自boston 1993年之前收集的506个房屋的数据和价格。load_boston()用于载入数据。
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from sklearn.linear_model import LinearRegression boston = load_boston() X = boston.data y = boston.target print("X.shape:{}. y.shape:{}".format(X.shape, y.shape)) print('boston.feature_name:{}'.format(boston.feature_names)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3) model = LinearRegression() start = time.clock() model.fit(X_train, y_train) train_score = model.score(X_train, y_train) cv_score = model.score(X_test, y_test) print('time used:{0:.6f}; train_score:{1:.6f}, sv_score:{2:.6f}'.format((time.clock()-start), train_score, cv_score))
输出内容为:
X.shape:(506, 13). y.shape:(506,) boston.feature_name:['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'] time used:0.012403; train_score:0.723941, sv_score:0.794958
可以看到测试集上准确率并不高,应该是欠拟合。
使用多项式做线性回归
上面的例子是欠拟合的,说明模型太简单,无法拟合数据的情况。现在增加模型复杂度,引入多项式。
打个比方,如果原来的特征是[a, b]两个特征,
在degree为2的情况下, 多项式特征变为[1, a, b, a^2, ab, b^2]。degree为其它值的情况依次类推。
多项式特征相当于增加了数据和模型的复杂性,能够更好的拟合。
下面的代码使用Pipeline把多项式特征和线性回归特征连起来,最终测试degree在1、2、3的情况下的得分。
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline def polynomial_model(degree=1): polynomial_features = PolynomialFeatures(degree=degree, include_bias=False) linear_regression = LinearRegression(normalize=True) pipeline = Pipeline([('polynomial_features', polynomial_features), ('linear_regression', linear_regression)]) return pipeline boston = load_boston() X = boston.data y = boston.target print("X.shape:{}. y.shape:{}".format(X.shape, y.shape)) print('boston.feature_name:{}'.format(boston.feature_names)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3) for i in range(1,4): print( 'degree:{}'.format( i ) ) model = polynomial_model(degree=i) start = time.clock() model.fit(X_train, y_train) train_score = model.score(X_train, y_train) cv_score = model.score(X_test, y_test) print('time used:{0:.6f}; train_score:{1:.6f}, sv_score:{2:.6f}'.format((time.clock()-start), train_score, cv_score))
输出结果为:
X.shape:(506, 13). y.shape:(506,) boston.feature_name:['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'] degree:1 time used:0.003576; train_score:0.723941, sv_score:0.794958 degree:2 time used:0.030123; train_score:0.930547, sv_score:0.860465 degree:3 time used:0.137346; train_score:1.000000, sv_score:-104.429619
可以看到degree为1和上面不使用多项式是一样的。degree为3在训练集上的得分为1,在测试集上得分是负数,明显过拟合了。
所以最终应该选择degree为2的模型。
二阶多项式比一阶多项式好的多,但是测试集和训练集上的得分仍有不少差距,这可能是数据不够的原因,需要更多的讯据才能进一步提高模型的准确度。
正规方程解法和梯度下降的比较
除了梯度下降法来逼近最优解,也可以使用正规的方程解法直接计算出最终的解来。
根据吴恩达的课程,线性回归最优解为:
theta = (X^T * X)^-1 * X^T * y
其实两种方法各有优缺点:
梯度下降法:
缺点:需要选择学习率,需要多次迭代
优点:特征值很多(1万以上)时仍然能以不错的速度工作
正规方程解法:
优点:不需要设置学习率,不需要多次迭代
缺点:需要计算X的转置和逆,复杂度O3;特征值很多(1万以上)时特变慢
在分类等非线性计算中,正规方程解法并不适用,所以梯度下降法适用范围更广。
以上这篇sklearn+python:线性回归案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
主要内容:实现线性回归算法,线性回归步骤Scikit-learn 简称 sklearn 是基于 Python 语言实现的机器学习算法库,它包含了常用的机器学习算法,比如回归、分类、聚类、支持向量机、随机森林等等。同时,它使用 NumPy 库进行高效的科学计算,比如线性代数、矩阵等等。 Scikit-learn 是 GitHub 上最受欢迎的机器学习库之一,其最新版本是 2020 年12 月发布的 scikit-learn 0.24.1。
我有困难得到的线性回归中的加权数组来影响输出。 这里有一个没有加权的例子。 现在,当添加重量时,我得到了相同的最佳拟合线。我希望看到回归有利于曲线的陡峭部分。我做错了什么?
本文向大家介绍python 实现一个简单的线性回归案例,包括了python 实现一个简单的线性回归案例的使用技巧和注意事项,需要的朋友参考一下 以上就是python 实现一个简单的线性回归案例的详细内容,更多关于python 实现线性回归的资料请关注呐喊教程其它相关文章!
线性回归是最简单的回归方法,它的目标是使用超平面拟合数据集,即学习一个线性模型以尽可能准确的预测实值输出标记。 单变量模型 模型 $$f(x)=w^Tx+b$$ 在线性回归问题中,一般使用最小二乘参数估计($$L_2$$损失),定义目标函数为 $$J={\arg min}{(w,b)}\sum{i=1}^{m}(y_i-wx_i-b)^2$$ 均方误差(MSE) $$MSE = \frac{1}{
线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。 由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深度学习模型。我们首先
本例仅使用糖尿病数据集的第一个特征,来展示线性回归在二维空间上的表现。下图中的直线, 即是线性回归所确定的一个界限,其目标是使得数据集中的实际值与线性回归所得的预测值之间的残差平方和最小。 同时也计算了回归系数、残差平方和以及解释方差得分,来判断该线性回归模型的质量。 原文解释和代码不符合: 实际上计算了回归系数, 均方误差(MSE),判定系数(r2_score) 判定系数和解释方差得分并不绝对相