图算法实现 - PageRank
优质
小牛编辑
185浏览
2023-12-01
import scala.language.postfixOps
import scala.reflect.ClassTag
import org.apache.spark.graphx._
import org.apache.spark.internal.Logging
/**
* PageRank algorithm implementation. There are two implementations of PageRank implemented.
*
* The first implementation uses the standalone [[Graph]] interface and runs PageRank
* for a fixed number of iterations:
* {{{
* var PR = Array.fill(n)( 1.0 )
* val oldPR = Array.fill(n)( 1.0 )
* for( iter <- 0 until numIter ) {
* swap(oldPR, PR)
* for( i <- 0 until n ) {
* PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
* }
* }
* }}}
*
* The second implementation uses the [[Pregel]] interface and runs PageRank until
* convergence:
*
* {{{
* var PR = Array.fill(n)( 1.0 )
* val oldPR = Array.fill(n)( 0.0 )
* while( max(abs(PR - oldPr)) > tol ) {
* swap(oldPR, PR)
* for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
* PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
* }
* }
* }}}
*
* `alpha` is the random reset probability (typically 0.15), `inNbrs[i]` is the set of
* neighbors which link to `i` and `outDeg[j]` is the out degree of vertex `j`.
*
* Note that this is not the "normalized" PageRank and as a consequence pages that have no
* inlinks will have a PageRank of alpha.
*/
object PageRank extends Logging {
/**
* Run PageRank for a fixed number of iterations returning a graph
* with vertex attributes containing the PageRank and edge
* attributes the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param numIter the number of iterations of PageRank to run
* @param resetProb the random reset probability (alpha)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED], numIter: Int,
resetProb: Double = 0.15): Graph[Double, Double] =
{
runWithOptions(graph, numIter, resetProb)
}
/**
* Run PageRank for a fixed number of iterations returning a graph
* with vertex attributes containing the PageRank and edge
* attributes the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param numIter the number of iterations of PageRank to run
* @param resetProb the random reset probability (alpha)
* @param srcId the source vertex for a Personalized Page Rank (optional)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*
*/
def runWithOptions[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], numIter: Int, resetProb: Double = 0.15,
srcId: Option[VertexId] = None): Graph[Double, Double] =
{
require(numIter > 0, s"Number of iterations must be greater than 0," +
s" but got ${numIter}")
require(resetProb >= 0 && resetProb <= 1, s"Random reset probability must belong" +
s" to [0, 1], but got ${resetProb}")
val personalized = srcId isDefined
val src: VertexId = srcId.getOrElse(-1L)
// Initialize the PageRank graph with each edge attribute having
// weight 1/outDegree and each vertex with attribute resetProb.
// When running personalized pagerank, only the source vertex
// has an attribute resetProb. All others are set to 0.
var rankGraph: Graph[Double, Double] = graph
// Associate the degree with each vertex
.outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) }
// Set the weight on the edges based on the degree
.mapTriplets( e => 1.0 / e.srcAttr, TripletFields.Src )
// Set the vertex attributes to the initial pagerank values
.mapVertices { (id, attr) =>
if (!(id != src && personalized)) resetProb else 0.0
}
def delta(u: VertexId, v: VertexId): Double = { if (u == v) 1.0 else 0.0 }
var iteration = 0
var prevRankGraph: Graph[Double, Double] = null
while (iteration < numIter) {
rankGraph.cache()
// Compute the outgoing rank contributions of each vertex, perform local preaggregation, and
// do the final aggregation at the receiving vertices. Requires a shuffle for aggregation.
val rankUpdates = rankGraph.aggregateMessages[Double](
ctx => ctx.sendToDst(ctx.srcAttr * ctx.attr), _ + _, TripletFields.Src)
// Apply the final rank updates to get the new ranks, using join to preserve ranks of vertices
// that didn't receive a message. Requires a shuffle for broadcasting updated ranks to the
// edge partitions.
prevRankGraph = rankGraph
val rPrb = if (personalized) {
(src: VertexId, id: VertexId) => resetProb * delta(src, id)
} else {
(src: VertexId, id: VertexId) => resetProb
}
rankGraph = rankGraph.joinVertices(rankUpdates) {
(id, oldRank, msgSum) => rPrb(src, id) + (1.0 - resetProb) * msgSum
}.cache()
rankGraph.edges.foreachPartition(x => {}) // also materializes rankGraph.vertices
logInfo(s"PageRank finished iteration $iteration.")
prevRankGraph.vertices.unpersist(false)
prevRankGraph.edges.unpersist(false)
iteration += 1
}
rankGraph
}
/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param tol the tolerance allowed at convergence (smaller => more accurate).
* @param resetProb the random reset probability (alpha)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def runUntilConvergence[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15): Graph[Double, Double] =
{
runUntilConvergenceWithOptions(graph, tol, resetProb)
}
/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param tol the tolerance allowed at convergence (smaller => more accurate).
* @param resetProb the random reset probability (alpha)
* @param srcId the source vertex for a Personalized Page Rank (optional)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def runUntilConvergenceWithOptions[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15,
srcId: Option[VertexId] = None): Graph[Double, Double] =
{
require(tol >= 0, s"Tolerance must be no less than 0, but got ${tol}")
require(resetProb >= 0 && resetProb <= 1, s"Random reset probability must belong" +
s" to [0, 1], but got ${resetProb}")
val personalized = srcId.isDefined
val src: VertexId = srcId.getOrElse(-1L)
// Initialize the pagerankGraph with each edge attribute
// having weight 1/outDegree and each vertex with attribute 1.0.
val pagerankGraph: Graph[(Double, Double), Double] = graph
// Associate the degree with each vertex
.outerJoinVertices(graph.outDegrees) {
(vid, vdata, deg) => deg.getOrElse(0)
}
// Set the weight on the edges based on the degree
.mapTriplets( e => 1.0 / e.srcAttr )
// Set the vertex attributes to (initialPR, delta = 0)
.mapVertices { (id, attr) =>
if (id == src) (resetProb, Double.NegativeInfinity) else (0.0, 0.0)
}
.cache()
// Define the three functions needed to implement PageRank in the GraphX
// version of Pregel
def vertexProgram(id: VertexId, attr: (Double, Double), msgSum: Double): (Double, Double) = {
val (oldPR, lastDelta) = attr
val newPR = oldPR + (1.0 - resetProb) * msgSum
(newPR, newPR - oldPR)
}
def personalizedVertexProgram(id: VertexId, attr: (Double, Double),
msgSum: Double): (Double, Double) = {
val (oldPR, lastDelta) = attr
var teleport = oldPR
val delta = if (src==id) 1.0 else 0.0
teleport = oldPR*delta
val newPR = teleport + (1.0 - resetProb) * msgSum
val newDelta = if (lastDelta == Double.NegativeInfinity) newPR else newPR - oldPR
(newPR, newDelta)
}
def sendMessage(edge: EdgeTriplet[(Double, Double), Double]) = {
if (edge.srcAttr._2 > tol) {
Iterator((edge.dstId, edge.srcAttr._2 * edge.attr))
} else {
Iterator.empty
}
}
def messageCombiner(a: Double, b: Double): Double = a + b
// The initial message received by all vertices in PageRank
val initialMessage = if (personalized) 0.0 else resetProb / (1.0 - resetProb)
// Execute a dynamic version of Pregel.
val vp = if (personalized) {
(id: VertexId, attr: (Double, Double), msgSum: Double) =>
personalizedVertexProgram(id, attr, msgSum)
} else {
(id: VertexId, attr: (Double, Double), msgSum: Double) =>
vertexProgram(id, attr, msgSum)
}
Pregel(pagerankGraph, initialMessage, activeDirection = EdgeDirection.Out)(
vp, sendMessage, messageCombiner)
.mapVertices((vid, attr) => attr._1)
} // end of deltaPageRank
}