图算法实现 - 三角计数
优质
小牛编辑
170浏览
2023-12-01
import scala.reflect.ClassTag
import org.apache.spark.graphx._
/**
* Compute the number of triangles passing through each vertex.
*
* The algorithm is relatively straightforward and can be computed in three steps:
*
* <ul>
* <li> Compute the set of neighbors for each vertex</li>
* <li> For each edge compute the intersection of the sets and send the count to both vertices.</li>
* <li> Compute the sum at each vertex and divide by two since each triangle is counted twice.</li>
* </ul>
*
* There are two implementations. The default `TriangleCount.run` implementation first removes
* self cycles and canonicalizes the graph to ensure that the following conditions hold:
* <ul>
* <li> There are no self edges</li>
* <li> All edges are oriented src > dst</li>
* <li> There are no duplicate edges</li>
* </ul>
* However, the canonicalization procedure is costly as it requires repartitioning the graph.
* If the input data is already in "canonical form" with self cycles removed then the
* `TriangleCount.runPreCanonicalized` should be used instead.
*
* {{{
* val canonicalGraph = graph.mapEdges(e => 1).removeSelfEdges().canonicalizeEdges()
* val counts = TriangleCount.runPreCanonicalized(canonicalGraph).vertices
* }}}
*
*/
object TriangleCount {
def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
// Transform the edge data something cheap to shuffle and then canonicalize
val canonicalGraph = graph.mapEdges(e => true).removeSelfEdges().convertToCanonicalEdges()
// Get the triangle counts
val counters = runPreCanonicalized(canonicalGraph).vertices
// Join them bath with the original graph
graph.outerJoinVertices(counters) { (vid, _, optCounter: Option[Int]) =>
optCounter.getOrElse(0)
}
}
def runPreCanonicalized[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
// Construct set representations of the neighborhoods
val nbrSets: VertexRDD[VertexSet] =
graph.collectNeighborIds(EdgeDirection.Either).mapValues { (vid, nbrs) =>
val set = new VertexSet(nbrs.length)
var i = 0
while (i < nbrs.length) {
// prevent self cycle
if (nbrs(i) != vid) {
set.add(nbrs(i))
}
i += 1
}
set
}
// join the sets with the graph
val setGraph: Graph[VertexSet, ED] = graph.outerJoinVertices(nbrSets) {
(vid, _, optSet) => optSet.getOrElse(null)
}
// Edge function computes intersection of smaller vertex with larger vertex
def edgeFunc(ctx: EdgeContext[VertexSet, ED, Int]) {
val (smallSet, largeSet) = if (ctx.srcAttr.size < ctx.dstAttr.size) {
(ctx.srcAttr, ctx.dstAttr)
} else {
(ctx.dstAttr, ctx.srcAttr)
}
val iter = smallSet.iterator
var counter: Int = 0
while (iter.hasNext) {
val vid = iter.next()
if (vid != ctx.srcId && vid != ctx.dstId && largeSet.contains(vid)) {
counter += 1
}
}
ctx.sendToSrc(counter)
ctx.sendToDst(counter)
}
// compute the intersection along edges
val counters: VertexRDD[Int] = setGraph.aggregateMessages(edgeFunc, _ + _)
// Merge counters with the graph and divide by two since each triangle is counted twice
graph.outerJoinVertices(counters) { (_, _, optCounter: Option[Int]) =>
val dblCount = optCounter.getOrElse(0)
// This algorithm double counts each triangle so the final count should be even
require(dblCount % 2 == 0, "Triangle count resulted in an invalid number of triangles.")
dblCount / 2
}
}
}