线性模型 - SVMs(支持向量机)
优质
小牛编辑
139浏览
2023-12-01
1 介绍
线性支持向量机是一个用于大规模分类任务的标准方法。它的目标函数线性模型中的公式(1)。它的损失函数是合页(hinge
)损失,如下所示
默认情况下,线性支持向量机训练时使用L2
正则化。线性支持向量机输出一个SVM
模型。给定一个新的数据点x
,模型通过w^Tx
的值预测,当这个值大于0时,输出为正,否则输出为负。
线性支持向量机并不需要核函数,要详细了解支持向量机,请参考文献【1】。
2 源码分析
2.1 实例
import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.util.MLUtils
// Load training data in LIBSVM format.
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Run training algorithm to build the model
val numIterations = 100
val model = SVMWithSGD.train(training, numIterations)
// Clear the default threshold.
model.clearThreshold()
// Compute raw scores on the test set.
val scoreAndLabels = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
}
// Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()
println("Area under ROC = " + auROC)
2.2 训练
和逻辑回归一样,训练过程均使用GeneralizedLinearModel
中的run
训练,只是训练使用的Gradient
和Updater
不同。在线性支持向量机中,使用HingeGradient
计算梯度,使用SquaredL2Updater
进行更新。
它的实现过程分为4步。参加逻辑回归了解这五步的详细情况。我们只需要了解HingeGradient
和SquaredL2Updater
的实现。
class HingeGradient extends Gradient {
override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {
val dotProduct = dot(data, weights)
// 我们的损失函数是 max(0, 1 - (2y - 1) (f_w(x)))
// 所以梯度是 -(2y - 1)*x
val labelScaled = 2 * label - 1.0
if (1.0 > labelScaled * dotProduct) {
val gradient = data.copy
scal(-labelScaled, gradient)
(gradient, 1.0 - labelScaled * dotProduct)
} else {
(Vectors.sparse(weights.size, Array.empty, Array.empty), 0.0)
}
}
override def compute(
data: Vector,
label: Double,
weights: Vector,
cumGradient: Vector): Double = {
val dotProduct = dot(data, weights)
// 我们的损失函数是 max(0, 1 - (2y - 1) (f_w(x)))
// 所以梯度是 -(2y - 1)*x
val labelScaled = 2 * label - 1.0
if (1.0 > labelScaled * dotProduct) {
//cumGradient -= labelScaled * data
axpy(-labelScaled, data, cumGradient)
//损失值
1.0 - labelScaled * dotProduct
} else {
0.0
}
}
}
线性支持向量机的训练使用L2
正则化方法。
class SquaredL2Updater extends Updater {
override def compute(
weightsOld: Vector,
gradient: Vector,
stepSize: Double,
iter: Int,
regParam: Double): (Vector, Double) = {
// w' = w - thisIterStepSize * (gradient + regParam * w)
// w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient
//表示步长,即负梯度方向的大小
val thisIterStepSize = stepSize / math.sqrt(iter)
val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
//正则化,brzWeights每行数据均乘以(1.0 - thisIterStepSize * regParam)
brzWeights :*= (1.0 - thisIterStepSize * regParam)
//y += x * a,即brzWeights -= gradient * thisInterStepSize
brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
//正则化||w||_2
val norm = brzNorm(brzWeights, 2.0)
(Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)
}
}
该函数的实现规则是:
w' = w - thisIterStepSize * (gradient + regParam * w)
w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient
这里thisIterStepSize
表示参数沿负梯度方向改变的速率,它随着迭代次数的增多而减小。
2.3 预测
override protected def predictPoint(
dataMatrix: Vector,
weightMatrix: Vector,
intercept: Double) = {
//w^Tx
val margin = weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept
threshold match {
case Some(t) => if (margin > t) 1.0 else 0.0
case None => margin
}
}