十七、深入:线性模型

优质
小牛编辑
135浏览
2023-12-01

线性模型在可用的数据很少时非常有用,或者对于文本分类中的非常大的特征空间很有用。 此外,它们是正则化的良好研究案例。

用于回归的线性模型

用于回归的所有线性模型学习系数参数coef_和偏移intercept_,来使用线性特征组合做出预测:

y_pred = x_test[0] * coef_[0] + ... + x_test[n_features-1] * coef_[n_features-1] + intercept_

回归的线性模型之间的差异在于,除了很好地拟合训练数据之外,对系数施加什么样的限制或惩罚,作为正则化。 最标准的线性模型是“普通最小二乘回归”,通常简称为“线性回归”。 它没有对coef_施加任何额外限制,因此当特征数量很大时,它会变得行为异常,并且模型会过拟合。

让我们生成一个简单的模拟,以查看这些模型的行为。

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

X, y, true_coefficient = make_regression(n_samples=200, n_features=30, n_informative=10, noise=100, coef=True, random_state=5)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=5, train_size=60, test_size=140)
print(X_train.shape)
print(y_train.shape)

线性回归

from sklearn.linear_model import LinearRegression
linear_regression = LinearRegression().fit(X_train, y_train)
print("R^2 on training set: %f" % linear_regression.score(X_train, y_train))
print("R^2 on test set: %f" % linear_regression.score(X_test, y_test))

from sklearn.metrics import r2_score
print(r2_score(np.dot(X, true_coefficient), y))

plt.figure(figsize=(10, 5))
coefficient_sorting = np.argsort(true_coefficient)[::-1]
plt.plot(true_coefficient[coefficient_sorting], "o", label="true")
plt.plot(linear_regression.coef_[coefficient_sorting], "o", label="linear regression")

plt.legend()

from sklearn.model_selection import learning_curve

def plot_learning_curve(est, X, y):
    training_set_size, train_scores, test_scores = learning_curve(est, X, y, train_sizes=np.linspace(.1, 1, 20))
    estimator_name = est.__class__.__name__
    line = plt.plot(training_set_size, train_scores.mean(axis=1), '--', label="training scores " + estimator_name)
    plt.plot(training_set_size, test_scores.mean(axis=1), '-', label="test scores " + estimator_name, c=line[0].get_color())
    plt.xlabel('Training set size')
    plt.legend(loc='best')
    plt.ylim(-0.1, 1.1)

plt.figure()    
plot_learning_curve(LinearRegression(), X, y)

岭回归(L2 惩罚)

岭估计器是普通LinearRegression的简单正则化(称为 l2 惩罚)。 特别是,它具有的优点是,在计算上不比普通的最小二乘估计更昂贵。

正则化的总数通过Ridgealpha参数设置。

from sklearn.linear_model import Ridge
ridge_models = {}
training_scores = []
test_scores = []

for alpha in [100, 10, 1, .01]:
    ridge = Ridge(alpha=alpha).fit(X_train, y_train)
    training_scores.append(ridge.score(X_train, y_train))
    test_scores.append(ridge.score(X_test, y_test))
    ridge_models[alpha] = ridge

plt.figure()
plt.plot(training_scores, label="training scores")
plt.plot(test_scores, label="test scores")
plt.xticks(range(4), [100, 10, 1, .01])
plt.xlabel('alpha')
plt.legend(loc="best")

plt.figure(figsize=(10, 5))
plt.plot(true_coefficient[coefficient_sorting], "o", label="true", c='b')

for i, alpha in enumerate([100, 10, 1, .01]):
    plt.plot(ridge_models[alpha].coef_[coefficient_sorting], "o", label="alpha = %.2f" % alpha, c=plt.cm.viridis(i / 3.))

plt.legend(loc="best")

调整alpha对表现至关重要。

plt.figure()
plot_learning_curve(LinearRegression(), X, y)
plot_learning_curve(Ridge(alpha=10), X, y)

Lasso(L1 惩罚)

Lasso估计器可用于对系数施加稀疏性。 换句话说,如果我们认为许多特征不相关,那么我们会更喜欢它。 这是通过所谓的 l1 惩罚来完成的。

from sklearn.linear_model import Lasso

lasso_models = {}
training_scores = []
test_scores = []

for alpha in [30, 10, 1, .01]:
    lasso = Lasso(alpha=alpha).fit(X_train, y_train)
    training_scores.append(lasso.score(X_train, y_train))
    test_scores.append(lasso.score(X_test, y_test))
    lasso_models[alpha] = lasso
plt.figure()
plt.plot(training_scores, label="training scores")
plt.plot(test_scores, label="test scores")
plt.xticks(range(4), [30, 10, 1, .01])
plt.legend(loc="best")

plt.figure(figsize=(10, 5))
plt.plot(true_coefficient[coefficient_sorting], "o", label="true", c='b')

for i, alpha in enumerate([30, 10, 1, .01]):
    plt.plot(lasso_models[alpha].coef_[coefficient_sorting], "o", label="alpha = %.2f" % alpha, c=plt.cm.viridis(i / 3.))

plt.legend(loc="best")

plt.figure(figsize=(10, 5))
plot_learning_curve(LinearRegression(), X, y)
plot_learning_curve(Ridge(alpha=10), X, y)
plot_learning_curve(Lasso(alpha=10), X, y)

你也可以使用ElasticNet,而不是选择RidgeLasso,它使用两种形式的正则化,并提供一个参数来指定它们之间的权重。ElasticNet通常在这些模型中表现最佳。

用于分类的线性模型

用于分类的所有线性模型学习系数参数coef_和偏移intercept_,来使用线性特征组合做出预测:

y_pred = x_test[0] * coef_[0] + ... + x_test[n_features-1] * coef_[n_features-1] + intercept_ > 0

如你所见,这与回归非常相似,只是应用了零处的阈值。

同样,用于分类的线性模型之间的区别是,对coef_intercept_施加什么类型的正则化,但是在如何测量训练集的拟合(所谓的损失函数)方面也存在微小差异。

线性分类的两种最常见的模型是LinearSVC实现的线性 SVM,和LogisticRegression

线性分类器的正则化的良好直觉是,使用高正则化,如果大多数点被正确分类就足够了。 但使用较少的正则化,每个数据点的重要性也越来越高。这里使用具有不同C值的线性 SVM 来说明。

LinearSVCC的影响

LinearSVC中,C参数控制模型中的正则化。

较低的C产生更多的正则化和更简单的模型,而较高的C产生较少的正则化和来自各个数据点的更多影响。

from figures import plot_linear_svc_regularization
plot_linear_svc_regularization()

Ridge/Lasso划分类似,你可以将penalty参数设置为'l1'来强制系数的稀疏性(类似于Lasso)或'l2'来鼓励更小的系数(类似于Ridge)。

多类线性分类

from sklearn.datasets import make_blobs
plt.figure()
X, y = make_blobs(random_state=42)
plt.figure(figsize=(8, 8))
plt.scatter(X[:, 0], X[:, 1], c=plt.cm.tab10(y))

from sklearn.svm import LinearSVC
linear_svm = LinearSVC().fit(X, y)
print(linear_svm.coef_.shape)
print(linear_svm.intercept_.shape)

plt.figure(figsize=(8, 8))
plt.scatter(X[:, 0], X[:, 1], c=plt.cm.tab10(y))
line = np.linspace(-15, 15)
for coef, intercept in zip(linear_svm.coef_, linear_svm.intercept_):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1])
plt.ylim(-10, 15)
plt.xlim(-10, 8);

点以一对多(OVR)的方式分类(又名 OVA),我们将测试点分配给模型对测试点具有最高置信度的类(在 SVM 情况下,与分隔超平面的距离最大)。

练习

使用LogisticRegression来分类数字数据集,并网格搜索C参数。 当你增加或减少alpha时,你认为上面的学习曲线如何变化? 尝试更改岭和Lasso中的alpha参数,看看你的直觉是否正确。

from sklearn.datasets import load_digits
from sklearn.linear_model import LogisticRegression

digits = load_digits()
X_digits, y_digits = digits.data, digits.target

# split the dataset, apply grid-search

# %load solutions/17A_logreg_grid.py

# %load solutions/17B_learning_curve_alpha.py