数组操作
这个函数在不改变数据的条件下修改形状,它接受如下参数:
其中:
arr
:要修改形状的数组newshape
:整数或者整数数组,新的形状应当兼容原有形状order
:'C'
为 C 风格顺序,'F'
为 F 风格顺序,'A'
为保留原顺序。
例子
import numpy as np
a = np.arange(8)
print '原始数组:'
print a
print '\n'
b = a.reshape(4,2)
print '修改后的数组:'
print b
输出如下:
原始数组:
[0 1 2 3 4 5 6 7]
修改后的数组:
[[0 1]
[2 3]
[4 5]
[6 7]]
numpy.ndarray.flat
该函数返回数组上的一维迭代器,行为类似 Python 内建的迭代器。
例子
import numpy as np
a = np.arange(8).reshape(2,4)
print '原始数组:'
print a
print '\n'
print '调用 flat 函数之后:'
# 返回展开数组中的下标的对应元素
print a.flat[5]
输出如下:
原始数组:
[[0 1 2 3]
[4 5 6 7]]
调用 flat 函数之后:
5
numpy.ndarray.flatten
该函数返回折叠为一维的数组副本,函数接受下列参数:
ndarray.flatten(order='C')
其中:
order
:'C'
— 按行,'F'
— 按列,'A'
— 原顺序,'k'
— 元素在内存中的出现顺序。
例子
import numpy as np
a = np.arange(8).reshape(2,4)
print '原数组:'
print a
print '\n'
# default is column-major
print '展开的数组:'
print a.flatten()
print '\n'
print '以 F 风格顺序展开的数组:'
print a.flatten(order = 'F')
输出如下:
原数组:
[[0 1 2 3]
[4 5 6 7]]
展开的数组:
[0 1 2 3 4 5 6 7]
以 F 风格顺序展开的数组:
[0 4 1 5 2 6 3 7]
numpy.ravel
这个函数返回展开的一维数组,并且按需生成副本。返回的数组和输入数组拥有相同数据类型。这个函数接受两个参数。
numpy.ravel(a, order='C')
构造器接受下列参数:
order
:'C'
— 按行,'F'
— 按列,'A'
— 原顺序,'k'
— 元素在内存中的出现顺序。
例子
import numpy as np
a = np.arange(8).reshape(2,4)
print '原数组:'
print a
print '\n'
print '调用 ravel 函数之后:'
print a.ravel()
print '\n'
print '以 F 风格顺序调用 ravel 函数之后:'
print a.ravel(order = 'F')
原数组:
[[0 1 2 3]
[4 5 6 7]]
调用 ravel 函数之后:
[0 1 2 3 4 5 6 7]
以 F 风格顺序调用 ravel 函数之后:
[0 4 1 5 2 6 3 7]
翻转操作
序号 | 操作及描述 |
---|---|
1. | transpose 翻转数组的维度 |
2. | ndarray.T 和self.transpose() 相同 |
3. | rollaxis 向后滚动指定的轴 |
4. | swapaxes 互换数组的两个轴 |
numpy.transpose
这个函数翻转给定数组的维度。如果可能的话它会返回一个视图。函数接受下列参数:
numpy.transpose(arr, axes)
其中:
arr
:要转置的数组axes
:整数的列表,对应维度,通常所有维度都会翻转。
例子
import numpy as np
a = np.arange(12).reshape(3,4)
print '原数组:'
print a
print '\n'
print '转置数组:'
print np.transpose(a)
输出如下:
原数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
转置数组:
[[ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11]]
numpy.ndarray.T
该函数属于ndarray
类,行为类似于numpy.transpose
。
例子
import numpy as np
a = np.arange(12).reshape(3,4)
print '原数组:'
print a
print '\n'
print '转置数组:'
print a.T
输出如下:
原数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
转置数组:
[[ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11]]
numpy.rollaxis
该函数向后滚动特定的轴,直到一个特定位置。这个函数接受三个参数:
numpy.rollaxis(arr, axis, start)
其中:
arr
:输入数组axis
:要向后滚动的轴,其它轴的相对位置不会改变start
:默认为零,表示完整的滚动。会滚动到特定位置。
例子
# 创建了三维的 ndarray
import numpy as np
a = np.arange(8).reshape(2,2,2)
print '原数组:'
print a
print '\n'
# 将轴 2 滚动到轴 0(宽度到深度)
print '调用 rollaxis 函数:'
print np.rollaxis(a,2)
# 将轴 0 滚动到轴 1:(宽度到高度)
print '\n'
print '调用 rollaxis 函数:'
print np.rollaxis(a,2,1)
输出如下:
原数组:
[[[0 1]
[2 3]]
[[4 5]
[6 7]]]
调用 rollaxis 函数:
[[[0 2]
[4 6]]
[[1 3]
[5 7]]]
调用 rollaxis 函数:
[[[0 2]
[1 3]]
[[4 6]
[5 7]]]
该函数交换数组的两个轴。对于 1.10 之前的 NumPy 版本,会返回交换后数组的视图。这个函数接受下列参数:
numpy.swapaxes(arr, axis1, axis2)
arr
:要交换其轴的输入数组axis1
:对应第一个轴的整数axis2
:对应第二个轴的整数
# 创建了三维的 ndarray
import numpy as np
a = np.arange(8).reshape(2,2,2)
print '原数组:'
print a
print '\n'
# 现在交换轴 0(深度方向)到轴 2(宽度方向)
print '调用 swapaxes 函数后的数组:'
print np.swapaxes(a, 2, 0)
输出如下:
broadcast
该函数使用两个数组作为输入参数。 下面的例子说明了它的用法。
import numpy as np
x = np.array([[1], [2], [3]])
y = np.array([4, 5, 6])
# 对 y 广播 x
b = np.broadcast(x,y)
# 它拥有 iterator 属性,基于自身组件的迭代器元组
print '对 y 广播 x:'
r,c = b.iters
print r.next(), c.next()
print r.next(), c.next()
print '\n'
# shape 属性返回广播对象的形状
print '广播对象的形状:'
print b.shape
print '\n'
# 手动使用 broadcast 将 x 与 y 相加
b = np.broadcast(x,y)
c = np.empty(b.shape)
print '手动使用 broadcast 将 x 与 y 相加:'
print c.shape
print '\n'
c.flat = [u + v for (u,v) in b]
print '调用 flat 函数:'
print c
print '\n'
# 获得了和 NumPy 内建的广播支持相同的结果
print 'x 与 y 的和:'
print x + y
输出如下:
对 y 广播 x:
1 5
广播对象的形状:
手动使用 broadcast 将 x 与 y 相加:
(3, 3)
调用 flat 函数:
[[ 5. 6. 7.]
[ 6. 7. 8.]
[ 7. 8. 9.]]
x 与 y 的和:
[[5 6 7]
[6 7 8]
[7 8 9]]
numpy.broadcast_to
此函数将数组广播到新形状。 它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError
。
注意 - 此功能可用于 1.10.0 及以后的版本。
该函数接受以下参数。
numpy.broadcast_to(array, shape, subok)
例子
import numpy as np
a = np.arange(4).reshape(1,4)
print '原数组:'
print a
print '\n'
print '调用 broadcast_to 函数之后:'
print np.broadcast_to(a,(4,4))
输出如下:
[[0 1 2 3]
[0 1 2 3]
[0 1 2 3]
[0 1 2 3]]
numpy.expand_dims
函数通过在指定位置插入新的轴来扩展数组形状。该函数需要两个参数:
numpy.expand_dims(arr, axis)
其中:
arr
:输入数组axis
:新轴插入的位置
例子
import numpy as np
x = np.array(([1,2],[3,4]))
print '数组 x:'
print x
print '\n'
y = np.expand_dims(x, axis = 0)
print '数组 y:'
print y
print '\n'
print '数组 x 和 y 的形状:'
print x.shape, y.shape
print '\n'
# 在位置 1 插入轴
y = np.expand_dims(x, axis = 1)
print '在位置 1 插入轴之后的数组 y:'
print y
print '\n'
print 'x.ndim 和 y.ndim:'
print x.ndim,y.ndim
print '\n'
print 'x.shape 和 y.shape:'
print x.shape, y.shape
输出如下:
数组 x:
[[1 2]
[3 4]]
数组 y:
[[[1 2]
[3 4]]]
数组 x 和 y 的形状:
(2, 2) (1, 2, 2)
在位置 1 插入轴之后的数组 y:
[[[1 2]]
[[3 4]]]
x.shape 和 y.shape:
2 3
x.shape and y.shape:
(2, 2) (2, 1, 2)
numpy.squeeze
函数从给定数组的形状中删除一维条目。 此函数需要两个参数。
numpy.squeeze(arr, axis)
其中:
arr
:输入数组axis
:整数或整数元组,用于选择形状中单一维度条目的子集
例子
import numpy as np
x = np.arange(9).reshape(1,3,3)
print '数组 x:'
print x
print '\n'
y = np.squeeze(x)
print '数组 y:'
print y
print '\n'
print '数组 x 和 y 的形状:'
print x.shape, y.shape
输出如下:
数组 x:
[[[0 1 2]
[3 4 5]
[6 7 8]]]
数组 y:
[[0 1 2]
[3 4 5]
[6 7 8]]
数组 x 和 y 的形状:
(1, 3, 3) (3, 3)
数组的连接
序号 | 数组及描述 |
---|---|
1. | concatenate 沿着现存的轴连接数据序列 |
2. | stack 沿着新轴连接数组序列 |
3. | hstack 水平堆叠序列中的数组(列方向) |
4. | vstack 竖直堆叠序列中的数组(行方向) |
numpy.concatenate
数组的连接是指连接。 此函数用于沿指定轴连接相同形状的两个或多个数组。 该函数接受以下参数。
numpy.concatenate((a1, a2, ...), axis)
其中:
a1, a2, ...
:相同类型的数组序列axis
:沿着它连接数组的轴,默认为 0
例子
import numpy as np
a = np.array([[1,2],[3,4]])
print '第一个数组:'
print a
print '\n'
b = np.array([[5,6],[7,8]])
print '第二个数组:'
print b
print '\n'
# 两个数组的维度相同
print '沿轴 0 连接两个数组:'
print np.concatenate((a,b))
print '\n'
print '沿轴 1 连接两个数组:'
print np.concatenate((a,b),axis = 1)
输出如下:
第一个数组:
[[1 2]
[3 4]]
第二个数组:
[[5 6]
[7 8]]
沿轴 0 连接两个数组:
[[1 2]
[3 4]
[5 6]
[7 8]]
沿轴 1 连接两个数组:
[[1 2 5 6]
[3 4 7 8]]
numpy.stack
此函数沿新轴连接数组序列。 此功能添加自 NumPy 版本 1.10.0。 需要提供以下参数。
numpy.stack(arrays, axis)
其中:
arrays
:相同形状的数组序列axis
:返回数组中的轴,输入数组沿着它来堆叠
import numpy as np
a = np.array([[1,2],[3,4]])
print '第一个数组:'
print a
print '\n'
b = np.array([[5,6],[7,8]])
print '第二个数组:'
print b
print '\n'
print '沿轴 0 堆叠两个数组:'
print np.stack((a,b),0)
print '\n'
print '沿轴 1 堆叠两个数组:'
print np.stack((a,b),1)
输出如下:
第一个数组:
[[1 2]
[3 4]]
第二个数组:
[[5 6]
[7 8]]
沿轴 0 堆叠两个数组:
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
沿轴 1 堆叠两个数组:
[[[1 2]
[5 6]]
[[3 4]
[7 8]]]
numpy.stack
函数的变体,通过堆叠来生成水平的单个数组。
例子
import numpy as np
a = np.array([[1,2],[3,4]])
print '第一个数组:'
print a
print '\n'
b = np.array([[5,6],[7,8]])
print '第二个数组:'
print b
print '\n'
print '水平堆叠:'
c = np.hstack((a,b))
print c
print '\n'
输出如下:
第一个数组:
[[1 2]
[3 4]]
第二个数组:
[[5 6]
[7 8]]
水平堆叠:
[[1 2 5 6]
[3 4 7 8]]
numpy.vstack
numpy.stack
函数的变体,通过堆叠来生成竖直的单个数组。
import numpy as np
a = np.array([[1,2],[3,4]])
print '第一个数组:'
print a
print '\n'
b = np.array([[5,6],[7,8]])
print '第二个数组:'
print b
print '\n'
print '竖直堆叠:'
c = np.vstack((a,b))
print c
输出如下:
numpy.split
numpy.split(ary, indices_or_sections, axis)
其中:
ary
:被分割的输入数组indices_or_sections
:可以是整数,表明要从输入数组创建的,等大小的子数组的数量。 如果此参数是一维数组,则其元素表明要创建新子数组的点。axis
:默认为 0
例子
import numpy as np
a = np.arange(9)
print '第一个数组:'
print a
print '\n'
print '将数组分为三个大小相等的子数组:'
b = np.split(a,3)
print b
print '\n'
print '将数组在一维数组中表明的位置分割:'
b = np.split(a,[4,7])
输出如下:
[0 1 2 3 4 5 6 7 8]
将数组分为三个大小相等的子数组:
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]
将数组在一维数组中表明的位置分割:
[array([0, 1, 2, 3]), array([4, 5, 6]), array([7, 8])]
numpy.hsplit
numpy.hsplit
是split()
函数的特例,其中轴为 1 表示水平分割,无论输入数组的维度是什么。
import numpy as np
a = np.arange(16).reshape(4,4)
print '第一个数组:'
print a
print '\n'
print '水平分割:'
b = np.hsplit(a,2)
print b
print '\n'
输出:
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
水平分割:
[array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]])]
numpy.vsplit
numpy.vsplit
是split()
函数的特例,其中轴为 0 表示竖直分割,无论输入数组的维度是什么。下面的例子使之更清楚。
import numpy as np
a = np.arange(16).reshape(4,4)
print '第一个数组:'
print a
print '\n'
print '竖直分割:'
b = np.vsplit(a,2)
print b
输出如下:
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
竖直分割:
[array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])]
添加/删除元素
序号 | 元素及描述 |
---|---|
1. | resize 返回指定形状的新数组 |
2. | append 将值添加到数组末尾 |
3. | insert 沿指定轴将值插入到指定下标之前 |
4. | delete 返回删掉某个轴的子数组的新数组 |
5. | unique 寻找数组内的唯一元素 |
numpy.resize
此函数返回指定大小的新数组。 如果新大小大于原始大小,则包含原始数组中的元素的重复副本。 该函数接受以下参数。
numpy.resize(arr, shape)
其中:
arr
:要修改大小的输入数组shape
:返回数组的新形状
例子
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print '第一个数组:'
print a
print '\n'
print '第一个数组的形状:'
print a.shape
print '\n'
b = np.resize(a, (3,2))
print '第二个数组:'
print b
print '\n'
print '第二个数组的形状:'
print b.shape
print '\n'
# 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了
print '修改第二个数组的大小:'
b = np.resize(a,(3,3))
print b
输出如下:
第一个数组:
[[1 2 3]
[4 5 6]]
第一个数组的形状:
(2, 3)
第二个数组:
[[1 2]
[3 4]
[5 6]]
第二个数组的形状:
(3, 2)
修改第二个数组的大小:
[[1 2 3]
[4 5 6]
[1 2 3]]
numpy.append
此函数在输入数组的末尾添加值。 附加操作不是原地的,而是分配新的数组。 此外,输入数组的维度必须匹配否则将生成ValueError
。
函数接受下列函数:
numpy.append(arr, values, axis)
其中:
arr
:输入数组values
:要向arr
添加的值,比如和arr
形状相同(除了要添加的轴)axis
:沿着它完成操作的轴。如果没有提供,两个参数都会被展开。
例子
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print '第一个数组:'
print a
print '\n'
print '向数组添加元素:'
print np.append(a, [7,8,9])
print '\n'
print '沿轴 0 添加元素:'
print np.append(a, [[7,8,9]],axis = 0)
print '\n'
print '沿轴 1 添加元素:'
print np.append(a, [[5,5,5],[7,8,9]],axis = 1)
输出如下:
第一个数组:
[[1 2 3]
[4 5 6]]
向数组添加元素:
[1 2 3 4 5 6 7 8 9]
沿轴 0 添加元素:
[[1 2 3]
[4 5 6]
[7 8 9]]
沿轴 1 添加元素:
[[1 2 3 5 5 5]
[4 5 6 7 8 9]]
此函数在给定索引之前,沿给定轴在输入数组中插入值。 如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。
insert()
函数接受以下参数:
numpy.insert(arr, obj, values, axis)
其中:
arr
:输入数组obj
:在其之前插入值的索引values
:要插入的值axis
:沿着它插入的轴,如果未提供,则输入数组会被展开
例子
import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
print '第一个数组:'
print a
print '\n'
print '未传递 Axis 参数。 在插入之前输入数组会被展开。'
print np.insert(a,3,[11,12])
print '\n'
print '传递了 Axis 参数。 会广播值数组来配输入数组。'
print '沿轴 0 广播:'
print np.insert(a,1,[11],axis = 0)
print '\n'
print '沿轴 1 广播:'
print np.insert(a,1,11,axis = 1)
输出如下:
第一个数组:
[[1 2]
[3 4]
[5 6]]
未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1 2 3 11 12 4 5 6]
传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴 0 广播:
[[ 1 2]
[11 11]
[ 3 4]
[ 5 6]]
沿轴 1 广播:
[[ 1 11 2]
[ 3 11 4]
[ 5 11 6]]
此函数返回从输入数组中删除指定子数组的新数组。 与insert()
函数的情况一样,如果未提供轴参数,则输入数组将展开。 该函数接受以下参数:
Numpy.delete(arr, obj, axis)
其中:
arr
:输入数组obj
:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组axis
:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开
例子
import numpy as np
a = np.arange(12).reshape(3,4)
print '第一个数组:'
print a
print '\n'
print '未传递 Axis 参数。 在插入之前输入数组会被展开。'
print np.delete(a,5)
print '\n'
print '删除第二列:'
print np.delete(a,1,axis = 1)
print '\n'
print '包含从数组中删除的替代值的切片:'
a = np.array([1,2,3,4,5,6,7,8,9,10])
print np.delete(a, np.s_[::2])
输出如下:
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 0 1 2 3 4 6 7 8 9 10 11]
删除第二列:
[[ 0 2 3]
[ 4 6 7]
[ 8 10 11]]
包含从数组中删除的替代值的切片:
[ 2 4 6 8 10]
numpy.unique
此函数返回输入数组中的去重元素数组。 该函数能够返回一个元组,包含去重数组和相关索引的数组。 索引的性质取决于函数调用中返回参数的类型。
numpy.unique(arr, return_index, return_inverse, return_counts)
其中:
arr
:输入数组,如果不是一维数组则会展开return_index
:如果为true
,返回输入数组中的元素下标return_inverse
:如果为true
,返回去重数组的下标,它可以用于重构输入数组return_counts
:如果为true
,返回去重数组中的元素在原数组中的出现次数
输出如下:
第一个数组:
[5 2 6 2 7 5 6 8 2 9]
第一个数组的去重值:
[2 5 6 7 8 9]
去重数组的索引数组:
[1 0 2 4 7 9]
我们可以看到每个和原数组下标对应的数值:
[5 2 6 2 7 5 6 8 2 9]
去重数组的下标:
[2 5 6 7 8 9]
下标为:
[1 0 2 0 3 1 2 4 0 5]
使用下标重构原数组:
[5 2 6 2 7 5 6 8 2 9]
返回唯一元素的重复数量:
[2 5 6 7 8 9]
[3 2 2 1 1 1]