当前位置: 首页 > 文档资料 > 数据挖掘算法 >

ACO 蚁群算法解决 TSP 旅行商问题

优质
小牛编辑
131浏览
2023-12-01

前言

蚁群算法也是一种利用了大自然规律的启发式算法,与之前学习过的GA遗传算法类似,遗传算法是用了生物进行理论,把更具适应性的基因传给下一代,最后就能得到一个最优解,常常用来寻找问题的最优解。当然,本篇文章不会主讲GA算法的,想要了解的同学可以查看,我的遗传算法学习遗传算法在走迷宫中的应。话题重新回到蚁群算法,蚁群算法是一个利用了蚂蚁寻找食物的原理。不知道小时候有没有发现,当一个蚂蚁发现了地上的食物,然后非常迅速的,就有其他的蚂蚁聚拢过来,最后把食物抬回家,这里面其实有着非常多的道理的,在ACO中就用到了这个机理用于解决实际生活中的一些问题。

蚂蚁找食物

首先我们要具体说说一个有意思的事情,就是蚂蚁找食物的问题,理解了这个原理之后,对于理解ACO算法就非常容易了。蚂蚁作为那么小的动物,在地上漫无目的的寻找食物,起初都是没有目标的,他从蚂蚁洞中走出,随机的爬向各个方向,在这期间他会向外界播撒一种化学物质,姑且就叫做信息素,所以这里就可以得到的一个前提,越多蚂蚁走过的路径,信息素浓度就会越高,那么某条路径信息素浓度高了,自然就会有越多的蚂蚁感觉到了,就会聚集过来了。所以当众多蚂蚁中的一个找到食物之后,他就会在走过的路径中放出信息素浓度,因此就会有很多的蚂蚁赶来了。类似下面的场景:

至于蚂蚁是如何感知这个信息素,这个就得问生物学家了,我也没做过研究。

算法介绍

OK,有了上面这个自然生活中的生物场景之后,我们再来切入文章主题来学习一下蚁群算法,百度百科中对应蚁群算法是这么介绍的:蚁群算法是一种在图中寻找优化路径的机率型算法。他的灵感就是来自于蚂蚁发现食物的行为。蚁群算法是一种新的模拟进化优化的算法,与遗传算法有很多相似的地方。蚁群算法在比较早的时候成功解决了TSP旅行商的问题(在后面的例子中也会以这个例子)。要用算法去模拟蚂蚁的这种行为,关键在于信息素的在算法中的设计,以及路径中信息素浓度越大的路径,将会有更高的概率被蚂蚁所选择到。

算法原理

要想实现上面的几个模拟行为,需要借助几个公式,当然公式不是我自己定义的,主要有3个,如下图:

上图中所出现的alpha,beita,p等数字都是控制因子,所以可不必理会,Tij(n)的意思是在时间为n的时候,从城市i到城市j的路径的信息素浓度。类似于nij的字母是城市i到城市j距离的倒数。就是下面这个公式。

所以所有的公式都是为第一个公式服务的,第一个公式的意思是指第k只蚂蚁选择从城市i到城市j的概率,可以见得,这个受距离和信息素浓度的双重影响,距离越远,去此城市的概率自然也低,所以nij会等于距离的倒数,而且在算信息素浓度的时候,也考虑到了信息素浓度衰减的问题,所以会在上次的浓度值上乘以一个衰减因子P。另外还要加上本轮搜索增加的信息素浓度(假如有蚂蚁经过此路径的话),所以这几个公式的整体设计思想还是非常棒的。

算法的代码实现

由于本身我这里没有什么真实的测试数据,就随便自己构造了一个简单的数据,输入如下,分为城市名称和城市之间的距离,用#符号做区分标识,大家应该可以看得懂吧

# CityName
1
2
3
4
# Distance
1 2 1
1 3 1.4
1 4 1
2 3 1
2 4 1
3 4 1

蚂蚁类Ant.java:

package DataMining_ACO;

import java.util.ArrayList;

/**
 * 蚂蚁类,进行路径搜索的载体
 * 
 * @author lyq
 * 
 */
public class Ant implements Comparable<Ant> {
  // 蚂蚁当前所在城市
  String currentPos;
  // 蚂蚁遍历完回到原点所用的总距离
  Double sumDistance;
  // 城市间的信息素浓度矩阵,随着时间的增多而减少
  double[][] pheromoneMatrix;
  // 蚂蚁已经走过的城市集合
  ArrayList<String> visitedCitys;
  // 还未走过的城市集合
  ArrayList<String> nonVisitedCitys;
  // 蚂蚁当前走过的路径
  ArrayList<String> currentPath;

  public Ant(double[][] pheromoneMatrix, ArrayList<String> nonVisitedCitys) {
    this.pheromoneMatrix = pheromoneMatrix;
    this.nonVisitedCitys = nonVisitedCitys;

    this.visitedCitys = new ArrayList<>();
    this.currentPath = new ArrayList<>();
  }

  /**
   * 计算路径的总成本(距离)
   * 
   * @return
   */
  public double calSumDistance() {
    sumDistance = 0.0;
    String lastCity;
    String currentCity;

    for (int i = 0; i < currentPath.size() - 1; i++) {
      lastCity = currentPath.get(i);
      currentCity = currentPath.get(i + 1);

      // 通过距离矩阵进行计算
      sumDistance += ACOTool.disMatrix[Integer.parseInt(lastCity)][Integer
          .parseInt(currentCity)];
    }

    return sumDistance;
  }

  /**
   * 蚂蚁选择前往下一个城市
   * 
   * @param city
   *            所选的城市
   */
  public void goToNextCity(String city) {
    this.currentPath.add(city);
    this.currentPos = city;
    this.nonVisitedCitys.remove(city);
    this.visitedCitys.add(city);
  }

  /**
   * 判断蚂蚁是否已经又重新回到起点
   * 
   * @return
   */
  public boolean isBack() {
    boolean isBack = false;
    String startPos;
    String endPos;

    if (currentPath.size() == 0) {
      return isBack;
    }

    startPos = currentPath.get(0);
    endPos = currentPath.get(currentPath.size() - 1);
    if (currentPath.size() > 1 && startPos.equals(endPos)) {
      isBack = true;
    }

    return isBack;
  }

  /**
   * 判断蚂蚁在本次的走过的路径中是否包含从城市i到城市j
   * 
   * @param cityI
   *            城市I
   * @param cityJ
   *            城市J
   * @return
   */
  public boolean pathContained(String cityI, String cityJ) {
    String lastCity;
    String currentCity;
    boolean isContained = false;

    for (int i = 0; i < currentPath.size() - 1; i++) {
      lastCity = currentPath.get(i);
      currentCity = currentPath.get(i + 1);

      // 如果某一段路径的始末位置一致,则认为有经过此城市
      if ((lastCity.equals(cityI) && currentCity.equals(cityJ))
          || (lastCity.equals(cityJ) && currentCity.equals(cityI))) {
        isContained = true;
        break;
      }
    }

    return isContained;
  }

  @Override
  public int compareTo(Ant o) {
    // TODO Auto-generated method stub
    return this.sumDistance.compareTo(o.sumDistance);
  }
}
蚁群算法工具类ACOTool.java:
package DataMining_ACO;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.text.MessageFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;

/**
 * 蚁群算法工具类
 * 
 * @author lyq
 * 
 */
public class ACOTool {
  // 输入数据类型
  public static final int INPUT_CITY_NAME = 1;
  public static final int INPUT_CITY_DIS = 2;

  // 城市间距离邻接矩阵
  public static double[][] disMatrix;
  // 当前时间
  public static int currentTime;

  // 测试数据地址
  private String filePath;
  // 蚂蚁数量
  private int antNum;
  // 控制参数
  private double alpha;
  private double beita;
  private double p;
  private double Q;
  // 随机数产生器
  private Random random;
  // 城市名称集合,这里为了方便,将城市用数字表示
  private ArrayList<String> totalCitys;
  // 所有的蚂蚁集合
  private ArrayList<Ant> totalAnts;
  // 城市间的信息素浓度矩阵,随着时间的增多而减少
  private double[][] pheromoneMatrix;
  // 目标的最短路径,顺序为从集合的前部往后挪动
  private ArrayList<String> bestPath;
  // 信息素矩阵存储图,key采用的格式(i,j,t)->value
  private Map<String, Double> pheromoneTimeMap;

  public ACOTool(String filePath, int antNum, double alpha, double beita,
      double p, double Q) {
    this.filePath = filePath;
    this.antNum = antNum;
    this.alpha = alpha;
    this.beita = beita;
    this.p = p;
    this.Q = Q;
    this.currentTime = 0;

    readDataFile();
  }

  /**
   * 从文件中读取数据
   */
  private void readDataFile() {
    File file = new File(filePath);
    ArrayList<String[]> dataArray = new ArrayList<String[]>();

    try {
      BufferedReader in = new BufferedReader(new FileReader(file));
      String str;
      String[] tempArray;
      while ((str = in.readLine()) != null) {
        tempArray = str.split(" ");
        dataArray.add(tempArray);
      }
      in.close();
    } catch (IOException e) {
      e.getStackTrace();
    }

    int flag = -1;
    int src = 0;
    int des = 0;
    int size = 0;
    // 进行城市名称种数的统计
    this.totalCitys = new ArrayList<>();
    for (String[] array : dataArray) {
      if (array[0].equals("#") && totalCitys.size() == 0) {
        flag = INPUT_CITY_NAME;

        continue;
      } else if (array[0].equals("#") && totalCitys.size() > 0) {
        size = totalCitys.size();
        // 初始化距离矩阵
        this.disMatrix = new double[size + 1][size + 1];
        this.pheromoneMatrix = new double[size + 1][size + 1];

        // 初始值-1代表此对应位置无值
        for (int i = 0; i < size; i++) {
          for (int j = 0; j < size; j++) {
            this.disMatrix[i][j] = -1;
            this.pheromoneMatrix[i][j] = -1;
          }
        }

        flag = INPUT_CITY_DIS;
        continue;
      }

      if (flag == INPUT_CITY_NAME) {
        this.totalCitys.add(array[0]);
      } else {
        src = Integer.parseInt(array[0]);
        des = Integer.parseInt(array[1]);

        this.disMatrix[src][des] = Double.parseDouble(array[2]);
        this.disMatrix[des][src] = Double.parseDouble(array[2]);
      }
    }
  }

  /**
   * 计算从蚂蚁城市i到j的概率
   * 
   * @param cityI
   *            城市I
   * @param cityJ
   *            城市J
   * @param currentTime
   *            当前时间
   * @return
   */
  private double calIToJProbably(String cityI, String cityJ, int currentTime) {
    double pro = 0;
    double n = 0;
    double pheromone;
    int i;
    int j;

    i = Integer.parseInt(cityI);
    j = Integer.parseInt(cityJ);

    pheromone = getPheromone(currentTime, cityI, cityJ);
    n = 1.0 / disMatrix[i][j];

    if (pheromone == 0) {
      pheromone = 1;
    }

    pro = Math.pow(n, alpha) * Math.pow(pheromone, beita);

    return pro;
  }

  /**
   * 计算综合概率蚂蚁从I城市走到J城市的概率
   * 
   * @return
   */
  public String selectAntNextCity(Ant ant, int currentTime) {
    double randomNum;
    double tempPro;
    // 总概率指数
    double proTotal;
    String nextCity = null;
    ArrayList<String> allowedCitys;
    // 各城市概率集
    double[] proArray;

    // 如果是刚刚开始的时候,没有路过任何城市,则随机返回一个城市
    if (ant.currentPath.size() == 0) {
      nextCity = String.valueOf(random.nextInt(totalCitys.size()) + 1);

      return nextCity;
    } else if (ant.nonVisitedCitys.isEmpty()) {
      // 如果全部遍历完毕,则再次回到起点
      nextCity = ant.currentPath.get(0);

      return nextCity;
    }

    proTotal = 0;
    allowedCitys = ant.nonVisitedCitys;
    proArray = new double[allowedCitys.size()];

    for (int i = 0; i < allowedCitys.size(); i++) {
      nextCity = allowedCitys.get(i);
      proArray[i] = calIToJProbably(ant.currentPos, nextCity, currentTime);
      proTotal += proArray[i];
    }

    for (int i = 0; i < allowedCitys.size(); i++) {
      // 归一化处理
      proArray[i] /= proTotal;
    }

    // 用随机数选择下一个城市
    randomNum = random.nextInt(100) + 1;
    randomNum = randomNum / 100;
    // 因为1.0是无法判断到的,,总和会无限接近1.0取为0.99做判断
    if (randomNum == 1) {
      randomNum = randomNum - 0.01;
    }

    tempPro = 0;
    // 确定区间
    for (int j = 0; j < allowedCitys.size(); j++) {
      if (randomNum > tempPro && randomNum <= tempPro + proArray[j]) {
        // 采用拷贝的方式避免引用重复
        nextCity = allowedCitys.get(j);
        break;
      } else {
        tempPro += proArray[j];
      }
    }

    return nextCity;
  }

  /**
   * 获取给定时间点上从城市i到城市j的信息素浓度
   * 
   * @param t
   * @param cityI
   * @param cityJ
   * @return
   */
  private double getPheromone(int t, String cityI, String cityJ) {
    double pheromone = 0;
    String key;

    // 上一周期需将时间倒回一周期
    key = MessageFormat.format("{0},{1},{2}", cityI, cityJ, t);

    if (pheromoneTimeMap.containsKey(key)) {
      pheromone = pheromoneTimeMap.get(key);
    }

    return pheromone;
  }

  /**
   * 每轮结束,刷新信息素浓度矩阵
   * 
   * @param t
   */
  private void refreshPheromone(int t) {
    double pheromone = 0;
    // 上一轮周期结束后的信息素浓度,丛信息素浓度图中查找
    double lastTimeP = 0;
    // 本轮信息素浓度增加量
    double addPheromone;
    String key;

    for (String i : totalCitys) {
      for (String j : totalCitys) {
        if (!i.equals(j)) {
          // 上一周期需将时间倒回一周期
          key = MessageFormat.format("{0},{1},{2}", i, j, t - 1);

          if (pheromoneTimeMap.containsKey(key)) {
            lastTimeP = pheromoneTimeMap.get(key);
          } else {
            lastTimeP = 0;
          }

          addPheromone = 0;
          for (Ant ant : totalAnts) {
            if(ant.pathContained(i, j)){
              // 每只蚂蚁传播的信息素为控制因子除以距离总成本
              addPheromone += Q / ant.calSumDistance();
            }
          }

          // 将上次的结果值加上递增的量,并存入图中
          pheromone = p * lastTimeP + addPheromone;
          key = MessageFormat.format("{0},{1},{2}", i, j, t);
          pheromoneTimeMap.put(key, pheromone);
        }
      }
    }

  }

  /**
   * 蚁群算法迭代次数
   * @param loopCount
   * 具体遍历次数
   */
  public void antStartSearching(int loopCount) {
    // 蚁群寻找的总次数
    int count = 0;
    // 选中的下一个城市
    String selectedCity = "";

    pheromoneTimeMap = new HashMap<String, Double>();
    totalAnts = new ArrayList<>();
    random = new Random();

    while (count < loopCount) {
      initAnts();

      while (true) {
        for (Ant ant : totalAnts) {
          selectedCity = selectAntNextCity(ant, currentTime);
          ant.goToNextCity(selectedCity);
        }

        // 如果已经遍历完所有城市,则跳出此轮循环
        if (totalAnts.get(0).isBack()) {
          break;
        }
      }

      // 周期时间叠加
      currentTime++;
      refreshPheromone(currentTime);
      count++;
    }

    // 根据距离成本,选出所花距离最短的一个路径
    Collections.sort(totalAnts);
    bestPath = totalAnts.get(0).currentPath;
    System.out.println(MessageFormat.format("经过{0}次循环遍历,最终得出的最佳路径:", count));
    System.out.print("entrance");
    for (String cityName : bestPath) {
      System.out.print(MessageFormat.format("-->{0}", cityName));
    }
  }

  /**
   * 初始化蚁群操作
   */
  private void initAnts() {
    Ant tempAnt;
    ArrayList<String> nonVisitedCitys;
    totalAnts.clear();

    // 初始化蚁群
    for (int i = 0; i < antNum; i++) {
      nonVisitedCitys = (ArrayList<String>) totalCitys.clone();
      tempAnt = new Ant(pheromoneMatrix, nonVisitedCitys);

      totalAnts.add(tempAnt);
    }
  }
}

场景测试类Client.java:

package DataMining_ACO;

/**
 * 蚁群算法测试类
 * @author lyq
 *
 */
public class Client {
  public static void main(String[] args){
    //测试数据
    String filePath = "C:\\Users\\lyq\\Desktop\\icon\\input.txt";
    //蚂蚁数量
    int antNum;
    //蚁群算法迭代次数
    int loopCount;
    //控制参数
    double alpha;
    double beita;
    double p;
    double Q;
    
    antNum = 3;
    alpha = 0.5;
    beita = 1;
    p = 0.5;
    Q = 5;
    loopCount = 5;
    
    ACOTool tool = new ACOTool(filePath, antNum, alpha, beita, p, Q);
    tool.antStartSearching(loopCount);
  }
}

算法的输出,就是在多次搜索之后,找到的路径中最短的一个路径:

经过5次循环遍历,最终得出的最佳路径:
entrance-->4-->1-->2-->3-->4

因为数据量比较小,并不能看出蚁群算法在这方面的优势,博友们可以再次基础上自行改造,并用大一点的数据做测试,其中的4个控制因子也可以调控。蚁群算法作为一种启发式算法,还可以和遗传算法结合,创造出更优的算法。蚁群算法可以解决许多这样的连通图路径优化问题。但是有的时候也会出现搜索时间过长的问题。

参考文献:百度百科.蚁群算法

我的数据挖掘算法库:https://github.com/linyiqun/DataMiningAlgorithm

我的算法库:https://github.com/linyiqun/lyq-algorithms-lib