纸上谈兵: 图 (graph)
图(graph)是一种比较松散的数据结构。它有一些节点(vertice),在某些节点之间,由边(edge)相连。节点的概念在树中也出现过,我们通常在节点中储存数据。边表示两个节点之间的存在关系。在树中,我们用边来表示子节点和父节点的归属关系。树是一种特殊的图,但限制性更强一些。
这样的一种数据结构是很常见的。比如计算机网络,就是由许多节点(计算机或者路由器)以及节点之间的边(网线)构成的。城市的道路系统,也是由节点(路口)和边(道路)构成的图。地铁系统也可以理解为图,地铁站可以认为是节点。基于图有许多经典的算法,比如求图中两个节点的最短路径,求最小伸展树等。
图的经典研究是柯尼斯堡七桥问题(Seven Bridges of Königsberg)。柯尼斯堡是现今的加里宁格勒,城市中有一条河流过,河中有两个小岛。有七座桥桥连接河的两岸和两个小岛。送信员总想知道,有没有一个办法,能不重复的走过7个桥呢?
(这个问题在许多奥数教材中称为"一笔画"问题)
欧拉时代的柯尼斯堡地图
柯尼斯堡的可以看作由7个边和4个节点构成的一个图:
这个问题最终被欧拉巧妙的解决。七桥问题也启发了一门新的数学学科——图论(graph theory)的诞生。欧拉的基本思路是,如果某个节点不是起点或者终点,那么连接它的边的数目必须为偶数个(从一个桥进入,再从另一个桥离开)。对于柯尼斯堡的七桥,由于4个节点都为奇数个桥,而最多只能有两个节点为起点和终点,所以不可能一次走完。
图的定义
严格的说,图[$G = (V, E)$]是由节点的集合V和边的集合E构成的。一个图的所有节点构成一个集合[$V$]。一个边可以表示为[$(v_1, v_2)$],其中[$v_1, v_2 \in V$],即两个节点。如果[$(v_1, v_2)$]有序,即[$(v_1, v_2)$]与[$(v_2, v_1)$]不同,那么图是有向的(directed)。有序的边可以理解为单行道,只能沿一个方向行进。如果[$(v_1, v_2)$]无序,那么图是无向的(undirected)。无序的边可以理解成双向都可以行进的道路。一个无序的边可以看作连接相同节点的两个反向的有序边,所以无向图可以理解为有向图的一种特殊情况。
(七桥问题中的图是无向的。城市中的公交线路可以是无向的,比如存在单向环线)
图的一个路径(path)是图的一系列节点[$w_1, w_2, ..., w_n$],且对于[$1 \le i < n $],有[$ (w_i, w_{i+1}) \in E$]。也就是说,路径是一系列的边连接而成,路径的两端为两个节点。路径上边的总数称为路径的长度。乘坐地铁时,我们会在选择某个路径,来从A站到达B站。这样的路径可能有不止一条,我们往往会根据路径的长度以及沿线的拥挤状况,来选择一条最佳的路线。如果存在一条长度大于0的路径,该路径的两端为同一节点,那么认为该图中存在环路(cycle)。很明显,上海的地铁系统中存在环路。
找到一条环路
如果从每个节点,到任意一个其它的节点,都有一条路径的话,那么图是连通的(connected)。对于一个有向图来说,这样的连通称为强连通(strongly connected)。如果一个有向图不满足强连通的条件,但将它的所有边都改为双向的,此时的无向图是连通的,那么认为该有向图是弱连通(weakly connected)。
如果将有火车站的城市认为是节点,铁路是连接城市的边,这样的图可能是不连通的。比如北京和费城,北京有铁路通往上海,费城有铁路通往纽约,但北京和费城之间没有路径相连。
图的实现
一种简单的实现图的方法是使用二维数组。让数组a的每一行为一个节点,该行的不同元素表示该节点与其他节点的连接关系。如果[$(u, v) \in E$],那么a[u][v]记为1,否则为0。比如下面的一个包含三个节点的图:
可以简单表示为
a | 1 | 2 | 3 |
1 | 0 | 1 | 1 |
2 | 0 | 0 | 0 |
3 | 0 | 1 | 0 |
这种实现方式所占据的空间为[$O(|V|^2)$],[$|V|$]为节点总数。所需内存随着节点增加而迅速增多。如果边不是很密集,那么很多数组元素记为0,只有稀疏的一些数组元素记为1,所以并不是很经济。
更经济的实现方式是使用,即记录每个节点所有的相邻节点。对于节点m,我们建立一个链表。对于任意节点k,如果有[$(m, k) \in E$],就将该节点放入到对应节点m的链表中。邻接表是实现图的标准方式。比如下面的图,
可以用如下的数据结构实现:
左侧为一个数组,每个数组元素代表一个节点,且指向一个链表。该链表包含有该数组元素所有的相邻元素。
总体上看,邻接表可以分为两部分。邻接表所占据的总空间为[$O(|V| + |E|)$]。数组部分储存节点信息,占据[$|V|$])的空间,即节点的总数。链表存储边的信息,占据[$|E|$]的空间,即边的总数。在一些复杂的问题中,定点和边还可能有其他的附加信息,我们可以将这些附加信息储存在相应的节点或者边的位置。
下面为具体的C代码:
/* By Vamei */ #include <stdio.h> #include <stdlib.h> #define NUM_V 5 typedef struct node *position; /* node */ struct node { int element; position next; }; /* * operations (stereotype) */ void insert_edge(position, int, int); void print_graph(position graph, int nv); /* for testing purpose */ void main() { struct node graph[NUM_V]; int i; // initialize the vertices for(i=1; i<NUM_V; i++) { (graph+i)->element = i; (graph+i)->next = NULL; } // insert edges insert_edge(graph,1,2); insert_edge(graph,1,4); insert_edge(graph,3,2); insert_edge(graph,4,2); insert_edge(graph,4,3); print_graph(graph,NUM_V); } /* print the graph */ void print_graph(position graph, int nv) { int i; position p; for(i=1; i<nv; i++) { p = (graph + i)->next; printf("From %3d: ", i); while(p != NULL) { printf("%d->%d; ", i, p->element); p = p->next; } printf("\n"); } } /* * insert an edge */ void insert_edge(position graph,int from, int to) { position np; position nodeAddr; np = graph + from; nodeAddr = (position) malloc(sizeof(struct node)); nodeAddr->element = to; nodeAddr->next = np->next; np->next = nodeAddr; }
运行结果:
From 1: 1->4; 1->2;
From 2:
From 3: 3->2;
From 4: 4->3; 4->2;
上面的实现主要基于链表,可参考纸上谈兵: 表 (list) 。
总结
图是一种很简单的数据结构。图的组织方式比较松散,自由度比较大,但也造成比较高的算法复杂度。我将在以后介绍一些图的经典算法。