主要内容:创建分层索引,应用分层索引,分层索引切片取值,聚合函数应用,局部索引,行索引层转换为列索引,列索引实现分层,交换层和层排序分层索引(Multiple Index)是 Pandas 中非常重要的索引类型,它指的是在一个轴上拥有多个(即两个以上)索引层数,这使得我们可以用低维度的结构来处理更高维的数据。比如,当想要处理三维及以上的高维数据时,就需要用到分层索引。 分层索引的目的是用低维度的结构(Series 或者 DataFrame)更好地处理高维数据。通过分层索引,我们可以像处理二维数据
主要内容:创建索引,设置索引,重置索引索引(index)是 Pandas 的重要工具,通过索引可以从 DataFame 中选择特定的行数和列数,这种选择数据的方式称为“子集选择”。 在 Pandas 中,索引值也被称为标签(label),它在 Jupyter 笔记本中以粗体字进行显示。索引可以加快数据访问的速度,它就好比数据的书签,通过它可以实现数据的快速查找。 创建索引 通过示例对 index 索引做进一步讲解。下面创建一个带有 i
主要内容:to_excel(),read_excel()Excel 是由微软公司开发的办公软件之一,它在日常工作中得到了广泛的应用。在数据量较少的情况下,Excel 对于数据的处理、分析、可视化有其独特的优势,因此可以显著提升您的工作效率。但是,当数据量非常大时,Excel 的劣势就暴露出来了,比如,操作重复、数据分析难等问题。Pandas 提供了操作 Excel 文件的函数,可以很方便地处理 Excel 表格。 to_excel() 通过 to_ex
主要内容:read_csv(),to_csv()在《 Python Pandas读取文件》中,我们讲解了多种用 Pandas 读写文件的方法。本节我们讲解如何应用这些方法 。 我们知道,文件的读写操作属于计算机的 IO 操作,Pandas IO 操作提供了一些读取器函数,比如 pd.read_csv()、pd.read_json 等,它们都返回一个 Pandas 对象。 在 Pandas 中用于读取文本的函数有两个,分别是: read_csv(
主要内容:CSV文件读取,json读取文件,SQL数据库读取当使用 Pandas 做数据分析的时,需要读取事先准备好的数据集,这是做数据分析的第一步。Panda 提供了多种读取数据的方法: read_csv() 用于读取文本文件 read_json() 用于读取 json 文件 read_sql_query() 读取 sql 语句的, 本节将对上述方法做详细介绍。 CSV文件读取 CSV 又称逗号分隔值文件,是一种简单的文件格式,以特定的结构来排列表格数据
主要内容:柱状图,直方图,箱型图,区域图,散点图,饼状图Pandas 在数据分析、数据可视化方面有着较为广泛的应用,Pandas 对 Matplotlib 绘图软件包的基础上单独封装了一个 接口,通过调用该接口可以实现常用的绘图操作。本节我们深入讲解一下 Pandas 的绘图操作。 Pandas 之所以能够实现了数据可视化,主要利用了 Matplotlib 库的 plot() 方法,它对 plot() 方法做了简单的封装,因此您可以直接调用该接口。下面
主要内容:对象创建,获取统计信息,获取类别属性,重命名类别,追加新类别,删除类别,分类对象比较通常情况下,数据集中会存在许多同一类别的信息,比如相同国家、相同行政编码、相同性别等,当这些相同类别的数据多次出现时,就会给数据处理增添许多麻烦,导致数据集变得臃肿,不能直观、清晰地展示数据。 针对上述问题,Pandas 提供了分类对象(Categorical Object),该对象能够实现有序排列、自动去重的功能,但是它不能执行运算。本节,我们了解一下分类对象的使用。 对象创建 我们可以通过多种
主要内容:降采样,升采样,频率转换,插值处理数据重采样是将时间序列从一个频率转换至另一个频率的过程,它主要有两种实现方式,分别是降采样和升采样,降采样指将高频率的数据转换为低频率,升采样则与其恰好相反,说明如下: 方法 说明 降采样 将高频率(间隔短)数据转换为低频率(间隔长)。 升采样 将低频率数据转换为高频率。 Pandas 提供了 resample() 函数来实现数据的重采样。 降采样 通过 resample() 函数完成数据的降采样
随机抽样,是统计学中常用的一种方法,它可以帮助我们从大量的数据中快速地构建出一组数据分析模型。在 Pandas 中,如果想要对数据集进行随机抽样,需要使用 sample() 函数。 sample() 函数的语法格式如下: 参数说明如下表所示: 参数名称 参数说明 n 表示要抽取的行数。 frac 表示抽取的比例,比如 frac=0.5,代表抽取总体数据的50%。 replace 布尔值参数,表示是
主要内容:日期格式化符号,Python处理,Pandas处理当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,可能会遇到日期格式不统一的问题,此时就需要对日期时间做统一的格式化处理。比如“Wednesday, June 6, 2020”可以写成“6/6/20”,或者写成“06-06-2020。 日期格式化符号 在对时间进行格式化处理时,它们都有固定的表示格式,比如小时的格式化符号为 ,分钟简写为 ,秒简写为 。下表对常用的日期
主要内容:创建时间戳,创建时间范围,更改时间频率,转化为时间戳,频率和周期转换,时间周期计算,创建时间周期,时间序列转换,创建日期范围,更改日频率,工作日时间顾名思义,时间序列(time series),就是由时间构成的序列,它指的是在一定时间内按照时间顺序测量的某个变量的取值序列,比如一天内的温度会随时间而发生变化,或者股票的价格会随着时间不断的波动,这里用到的一系列时间,就可以看做时间序列。时间序列包含三种应用场景,分别是: 特定的时刻(timestamp),也就是时间戳; 固定的日期(pe
主要内容:concat(),append()Pandas 通过 concat() 函数能够轻松地将 Series 与 DataFrame 对象组合在一起,函数的语法格式如下: pd.concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False) 参数说明如下所示: 参数名称 说明 objs 一个序列或者是Series、DataFrame对象。 axis 表示在哪个轴方向
主要内容:使用how参数合并Pandas 提供的 merge() 函数能够进行高效的合并操作,这与 SQL 关系型数据库的 MERGE 用法非常相似。从字面意思上不难理解,merge 翻译为“合并”,指的是将两个 DataFrame 数据表按照指定的规则进行连接,最后拼接成一个新的 DataFrame 数据表。 merge() 函数的法格式如下: pd.merge(left, right, how='inner', on=
主要内容:创建DataFrame对象,创建groupby分组对象,查看分组结果,遍历分组数据,应用聚合函数,组的转换操作,组的数据过滤操作在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在 Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的 操作非常相似。 在划分出来的组(group)上应用一些统计函数,从而达到
主要内容:为什么会存在缺失值?,什么是稀疏数据?,缺失值处理,检查缺失值,缺失数据计算,清理并填充缺失值,删除缺失值在一些数据分析业务中,数据缺失是我们经常遇见的问题,缺失值会导致数据质量的下降,从而影响模型预测的准确性,这对于机器学习和数据挖掘影响尤为严重。因此妥善的处理缺失值能够使模型预测更为准确和有效。 为什么会存在缺失值? 前面章节的示例中,我们遇到过很多 NaN 值,关于缺失值您可能会有很多疑问,数据为什么会丢失数据呢,又是从什么时候丢失的呢?通过下面场景,您会得到答案。 其实在很多时