#24届软开秋招面试经验大赏# 认准拉普拉斯,秋招必上岸 就业zixun可私。 荣耀一共就两轮面试,而且也没考coding。每轮都是半小时左右。去面试间等着叫号,还是体验挺好的。 出结果也挺快的,不像华子那么能泡。 二面应该是主管面了。 面试时间半小时,难度一颗星。 1 自我介绍 2 实习介绍 项目介绍 科研介绍 3 平时喜欢看哪方面的论文,分享一个。 4 看我实习挺多,方向是怎么选的,有没有什么
10点到3点半,中间停了一个半小时,面完人都傻了,真遭不住...... 一面 基本就围绕实验室项目聊了好久,中间穿插问了几个强化学习算法原理 然后问了深度学习和pytorch 几个简单的点 手撕:一个数组,对每个数可以给+ 或者-号,问有多少种情况可以和为target 二面 基本也是就围绕实验室项目聊了好久 然后再聊了好久Tcmalloc 手撕:一个无序数组,然后把它变成a <= b >= c <
1. 手撕,给出中序遍历和后序遍历,构建树 2. 介绍树模型,(GBDT,XGBoost等) 3. 项目为什么用XGBoost 4. 介绍LR 6. XGB和LR的区别,各适用哪些场景。 7. 项目中Lovain算法是个什么算法。 8. 项目中使用的评价指标 9. 准确率有什么缺点和问题 10. AUC 11. 优化算法 12. 激活函数 13. 特征提取方法? 14. CNN和MLP区别,CNN
一面 约35min 自我介绍 项目内容 项目内mysql和redis的应用 BERT细节 data collator相关 八股 python 协程、线程、进程 go与python最大的不同点 mysql慢查询怎么优化 ddp有没用过 反问: 技术栈(C++和python)、为算法部门服务、资源管理(k8s,docker) 一周内知道结果 二面: 约35min 自我介绍 项目内容 流程介绍、数据集、
补录批了,还是比较简单的 面试内容: * 自我介绍 * 挑一个困难的项目介绍 * 武汉和深圳如何考虑 * 职业规划 * 期望薪资 * 三方还在吗 * 为啥还没签三方?是0offer吗
面试时长:40min 面试内容: * 自我介绍 * 简历挨着介绍 * modelart * 推理框架 * 精度影响因素 * 算子开发流程 * 手撕:阻塞队列
更新:达到复试环节 ———————————— 是一个女面试官,还挺惊讶的。 先问能实习多久,大概可以什么时候,为什么在腾讯优图这么短, 后面开始问论文操作和优图做的事情,只是提了一嘴,没有细说。 最后例行代码题,求非负整数的根号,鼠鼠不会啊,没写出来,写了个很慢的二分 中间闲聊了一下,希望可以过啊
1.transformer结构 2.不用专业知识和数学知识解释CNN 3.如何把图片分割成目标数目不确定的多个子图 4.在UI特别复杂的游戏场景中,如何在数据进入RL之前把游戏场景中的agent信息提取出来 一面过 周四二面
本文向大家介绍Opencv分水岭算法学习,包括了Opencv分水岭算法学习的使用技巧和注意事项,需要的朋友参考一下 分水岭算法可以将图像中的边缘转化成“山脉”,将均匀区域转化为“山谷”,这样有助于分割目标。 分水岭算法是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中的每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的
参考资料:http://blog.csdn.net/b2b160/article/details/4680853/(冒昧的用了链接下的几张图) 百度百科:http://baike.baidu.com/link?url=FcwTBx_yPcD5DDEnN1FqvTkG4QNllkB7Yis6qFOL65wpn6EdT5LXFxUCmv4JlUfV3LUPHQGdYbGj8kHVs3GuaK 算法介绍
一面 深挖实习项目,问了算法的idea产生以及部署落地后的效果,最后问进一步改进方法 二面 第一部分考察对NeRF整个领域的了解,介绍了十多个下游领域方向代表的论文并说明优缺点;第二部分针对NeRF问我关注什么样的改进以及重点看哪方面的创新点,之后对NeRF+SDF的表面表达原理细节以及公式提问,接着问实习项目的创新点;第三部分针对他们业务中存在的问题问我有哪些方法或者建议;最后一部分简单过了鼠鼠
时间:晚上10:16左右,20分钟左右 面试官男,非常疲惫,每次我回答完问题都沉默了很久,声音也很疲惫。 1、问学校,学位证,毕业证 2、项目经理(sd、lora、fine-tune过程) 3、L2正则化解释一下 4、用过BN(batch normalization)吗? (答了梯度消失的时候的最佳解决方案,顺便扯了梯度消失的时候换激活函数,实际上还有梯度爆炸也可以用) 5、用过Dropout吗?
岗位:机器学习/数据挖掘/自然语言处理工程师 面试体验:第一个面的公司,很紧张,也是被拷打的最狠的一次 一面 8/23 70分钟 1. 自我介绍 2. 实习拷打 推荐算法中的相关模型和前沿理论 是否有读过最近的期刊上的文章,做一些介绍 3. 科研拷打 如何做的模型 其中的系数如何确定 4. NLP拷打 Attention介绍 QKV是什么,举例说一下 Tranformer的encoder和deco
9.7一面 (50min) 自我介绍 项目比赛提问,问具体的细节 GRU与LSTM的区别 GBDT的原理 XGBoost和LightGBM与GBDT的区别 BN在训练和测试阶段的区别?BN在训练时是如何更新参数的? 手撕算法题: 在一个m*n的矩阵里,一个机器人初始在x,y点,并且每次只能向相邻的上下左右四个方向移动一步,那么在最多移动k次情况下,一共有多少条路径可以逃出矩阵? 输入5个参数:m,
8月15日 一面(40分钟) 没有笔试,测评做完直达面试,两个面试官,没有手撕。 自我介绍 实习经历 大模型多卡流水并行的实现 资源利用率怎么评估 还有没有其他相关的优化方案 项目经历 八股 多态的概念和原理->虚函数->虚函数指针->多次继承的派生类的虚函数指针和虚函数表的情况 模板类用的多吗->vector在push_back会有什么操作 cpp多线程 你觉得做机器学习平台开发要哪些知识? 你